ladybird/Userland/Libraries/LibGfx/AntiAliasingPainter.cpp
Florian Stellbrink af3174c9ce LibGFX: Transform vertices when drawing antialiased lines
Previously we transformed each rasterized point when drawing a line.
Now we transform the lines' endpoints instead.

That means running two transforms per line instead of transforms for
each pixel. It is not clear that the overhead for the fast path is
still worth it. If we still want to optimize identity and translations,
it is probably better to do that inside AffineTransform.

In addition this will behave nicer if the transform includes scaling.
Previously this would rasterize lines before scaling. Which means
drawing too many points when scaling down, and not drawing enough
points when scaling up.
With the new approach we will automatically rasterize at pixel scale.

This is essentially the same as OpenGL, where vertices are transformed
and rasterization happens in screen space.
2022-04-11 03:16:37 +02:00

419 lines
15 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2022, Ben Maxwell <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#if defined(__GNUC__) && !defined(__clang__)
# pragma GCC optimize("O3")
#endif
#include "FillPathImplementation.h"
#include <AK/Function.h>
#include <LibGfx/AntiAliasingPainter.h>
#include <LibGfx/Path.h>
// Base algorithm from https://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm,
// because there seems to be no other known method for drawing AA'd lines (?)
template<Gfx::AntiAliasingPainter::AntiAliasPolicy policy>
void Gfx::AntiAliasingPainter::draw_anti_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color)
{
// FIXME: Implement this :P
VERIFY(style == Painter::LineStyle::Solid);
auto corrected_thickness = thickness > 1 ? thickness - 1 : thickness;
auto size = IntSize(corrected_thickness, corrected_thickness);
auto plot = [&](int x, int y, float c) {
m_underlying_painter.fill_rect(IntRect::centered_on({ x, y }, size), color.with_alpha(color.alpha() * c));
};
auto integer_part = [](float x) { return floorf(x); };
auto round = [&](float x) { return integer_part(x + 0.5f); };
auto fractional_part = [&](float x) { return x - floorf(x); };
auto one_minus_fractional_part = [&](float x) { return 1.0f - fractional_part(x); };
auto draw_line = [&](float x0, float y0, float x1, float y1) {
bool steep = fabsf(y1 - y0) > fabsf(x1 - x0);
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
float dx = x1 - x0;
float dy = y1 - y0;
float gradient;
if (dx == 0.0f)
gradient = 1.0f;
else
gradient = dy / dx;
// Handle first endpoint.
int x_end = round(x0);
int y_end = y0 + gradient * (x_end - x0);
float x_gap = one_minus_fractional_part(x0 + 0.5f);
int xpxl1 = x_end; // This will be used in the main loop.
int ypxl1 = integer_part(y_end);
if (steep) {
plot(ypxl1, xpxl1, one_minus_fractional_part(y_end) * x_gap);
plot(ypxl1 + 1, xpxl1, fractional_part(y_end) * x_gap);
} else {
plot(xpxl1, ypxl1, one_minus_fractional_part(y_end) * x_gap);
plot(xpxl1, ypxl1 + 1, fractional_part(y_end) * x_gap);
}
float intery = y_end + gradient; // First y-intersection for the main loop.
// Handle second endpoint.
x_end = round(x1);
y_end = y1 + gradient * (x_end - x1);
x_gap = fractional_part(x1 + 0.5f);
int xpxl2 = x_end; // This will be used in the main loop
int ypxl2 = integer_part(y_end);
if (steep) {
plot(ypxl2, xpxl2, one_minus_fractional_part(y_end) * x_gap);
plot(ypxl2 + 1, xpxl2, fractional_part(y_end) * x_gap);
} else {
plot(xpxl2, ypxl2, one_minus_fractional_part(y_end) * x_gap);
plot(xpxl2, ypxl2 + 1, fractional_part(y_end) * x_gap);
}
// Main loop.
if (steep) {
for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
plot(integer_part(intery), x, 1);
} else {
plot(integer_part(intery), x, one_minus_fractional_part(intery));
}
plot(integer_part(intery) + 1, x, fractional_part(intery));
intery += gradient;
}
} else {
for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
plot(x, integer_part(intery), 1);
} else {
plot(x, integer_part(intery), one_minus_fractional_part(intery));
}
plot(x, integer_part(intery) + 1, fractional_part(intery));
intery += gradient;
}
}
};
auto mapped_from = m_transform.map(actual_from);
auto mapped_to = m_transform.map(actual_to);
draw_line(mapped_from.x(), mapped_from.y(), mapped_to.x(), mapped_to.y());
}
void Gfx::AntiAliasingPainter::draw_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color alternate_color)
{
draw_anti_aliased_line<AntiAliasPolicy::OnlyEnds>(actual_from, actual_to, color, thickness, style, alternate_color);
}
void Gfx::AntiAliasingPainter::draw_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color alternate_color)
{
draw_anti_aliased_line<AntiAliasPolicy::Full>(actual_from, actual_to, color, thickness, style, alternate_color);
}
void Gfx::AntiAliasingPainter::fill_path(Path& path, Color color, Painter::WindingRule rule)
{
Detail::fill_path<Detail::FillPathMode::AllowFloatingPoints>(*this, path, color, rule);
}
void Gfx::AntiAliasingPainter::stroke_path(Path const& path, Color color, float thickness)
{
FloatPoint cursor;
for (auto& segment : path.segments()) {
switch (segment.type()) {
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
case Segment::Type::MoveTo:
cursor = segment.point();
break;
case Segment::Type::LineTo:
draw_line(cursor, segment.point(), color, thickness);
cursor = segment.point();
break;
case Segment::Type::QuadraticBezierCurveTo: {
auto& through = static_cast<QuadraticBezierCurveSegment const&>(segment).through();
draw_quadratic_bezier_curve(through, cursor, segment.point(), color, thickness);
cursor = segment.point();
break;
}
case Segment::Type::CubicBezierCurveTo: {
auto& curve = static_cast<CubicBezierCurveSegment const&>(segment);
auto& through_0 = curve.through_0();
auto& through_1 = curve.through_1();
draw_cubic_bezier_curve(through_0, through_1, cursor, segment.point(), color, thickness);
cursor = segment.point();
break;
}
case Segment::Type::EllipticalArcTo:
auto& arc = static_cast<EllipticalArcSegment const&>(segment);
draw_elliptical_arc(cursor, segment.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness);
cursor = segment.point();
break;
}
}
}
void Gfx::AntiAliasingPainter::draw_elliptical_arc(FloatPoint const& p1, FloatPoint const& p2, FloatPoint const& center, FloatPoint const& radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, float thickness, Painter::LineStyle style)
{
Gfx::Painter::for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
draw_line(fp1, fp2, color, thickness, style);
});
}
void Gfx::AntiAliasingPainter::draw_quadratic_bezier_curve(FloatPoint const& control_point, FloatPoint const& p1, FloatPoint const& p2, Color color, float thickness, Painter::LineStyle style)
{
Gfx::Painter::for_each_line_segment_on_bezier_curve(control_point, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
draw_line(fp1, fp2, color, thickness, style);
});
}
void Gfx::AntiAliasingPainter::draw_cubic_bezier_curve(FloatPoint const& control_point_0, FloatPoint const& control_point_1, FloatPoint const& p1, FloatPoint const& p2, Color color, float thickness, Painter::LineStyle style)
{
Gfx::Painter::for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, [&](FloatPoint const& fp1, FloatPoint const& fp2) {
draw_line(fp1, fp2, color, thickness, style);
});
}
void Gfx::AntiAliasingPainter::draw_circle(IntPoint center, int radius, Color color)
{
/*
Algorithm from: https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf
Inline comments are from the paper.
*/
center *= m_underlying_painter.scale();
radius *= m_underlying_painter.scale();
// TODO: Generalize to ellipses (see paper)
// These happen to be the same here, but are treated separately in the paper:
// intensity is the fill alpha
int const intensity = color.alpha();
// 0 to subpixel_resolution is the range of alpha values for the circle edges
int const subpixel_resolution = intensity;
// Note: Variable names below are based off the paper
// Current pixel address
int i = 0;
int q = radius;
// 1st and 2nd order differences of y
int delta_y = 0;
int delta2_y = 0;
// Exact and predicted values of f(i) -- the circle equation scaled by subpixel_resolution
int y = subpixel_resolution * radius;
int y_hat = 0;
// The value of f(i)*f(i)
int f_squared = y * y;
// 1st and 2nd order differences of f(i)*f(i)
int delta_f_squared = subpixel_resolution * subpixel_resolution;
int delta2_f_squared = -delta_f_squared - delta_f_squared;
// edge_intersection_area/subpixel_resolution = percentage of pixel intersected by circle
// (aka the alpha for the pixel)
int edge_intersection_area = 0;
int old_area = edge_intersection_area;
auto predict = [&] {
delta_y += delta2_y;
// y_hat is the predicted value of f(i)
y_hat = y + delta_y;
};
auto minimize = [&] {
// Initialize the minimization
delta_f_squared += delta2_f_squared;
f_squared += delta_f_squared;
int min_squared_error = y_hat * y_hat - f_squared;
int prediction_overshot = 1;
y = y_hat;
// Force error negative
if (min_squared_error > 0) {
min_squared_error = -min_squared_error;
prediction_overshot = -1;
}
// Minimize
int previous_error = min_squared_error;
while (min_squared_error < 0) {
y += prediction_overshot;
previous_error = min_squared_error;
min_squared_error += y + y - prediction_overshot;
}
if (min_squared_error + previous_error > 0)
y -= prediction_overshot;
};
auto correct = [&] {
int error = y - y_hat;
delta2_y += error;
delta_y += error;
};
auto pixel = [&](int x, int y, int alpha) {
if (alpha <= 0 || alpha > 255)
return;
auto pixel_colour = color;
pixel_colour.set_alpha(alpha);
m_underlying_painter.set_pixel(center + IntPoint { x, y }, pixel_colour, true);
};
auto fill = [&](int x, int ymax, int ymin, int alpha) {
while (ymin <= ymax) {
pixel(x, ymin, alpha);
ymin += 1;
}
};
auto eight_pixel = [&](int x, int y, int alpha) {
pixel(x, y, alpha);
pixel(x, -y - 1, alpha);
pixel(-x - 1, -y - 1, alpha);
pixel(-x - 1, y, alpha);
pixel(y, x, alpha);
pixel(y, -x - 1, alpha);
pixel(-y - 1, -x - 1, alpha);
pixel(-y - 1, x, alpha);
};
while (i < q) {
predict();
minimize();
correct();
old_area = edge_intersection_area;
edge_intersection_area += delta_y;
if (edge_intersection_area >= 0) {
// Single pixel on perimeter
eight_pixel(i, q, (edge_intersection_area + old_area) / 2);
fill(i, q - 1, -q, intensity);
fill(-i - 1, q - 1, -q, intensity);
} else {
// Two pixels on perimeter
edge_intersection_area += subpixel_resolution;
eight_pixel(i, q, old_area / 2);
q -= 1;
fill(i, q - 1, -q, intensity);
fill(-i - 1, q - 1, -q, intensity);
if (i < q) {
// Haven't gone below the diagonal
eight_pixel(i, q, (edge_intersection_area + subpixel_resolution) / 2);
fill(q, i - 1, -i, intensity);
fill(-q - 1, i - 1, -i, intensity);
} else {
// Went below the diagonal, fix edge_intersection_area for final pixels
edge_intersection_area += subpixel_resolution;
}
}
i += 1;
}
// Fill in 4 remaning pixels
int alpha = edge_intersection_area / 2;
pixel(q, q, alpha);
pixel(-q - 1, q, alpha);
pixel(-q - 1, -q - 1, alpha);
pixel(q, -q - 1, alpha);
}
void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
{
fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
}
void Gfx::AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
{
if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius)
return m_underlying_painter.fill_rect(a_rect, color);
if (color.alpha() == 0)
return;
IntPoint top_left_corner {
a_rect.x() + top_left_radius,
a_rect.y() + top_left_radius,
};
IntPoint top_right_corner {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y() + top_right_radius,
};
IntPoint bottom_left_corner {
a_rect.x() + bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_right_radius
};
IntPoint bottom_right_corner {
a_rect.x() + a_rect.width() - bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_left_radius
};
IntRect top_rect {
a_rect.x() + top_left_radius,
a_rect.y(),
a_rect.width() - top_left_radius - top_right_radius,
top_left_radius
};
IntRect right_rect {
a_rect.x() + a_rect.width() - top_right_radius,
a_rect.y() + top_right_radius,
top_right_radius,
a_rect.height() - top_right_radius - bottom_right_radius
};
IntRect bottom_rect {
a_rect.x() + bottom_left_radius,
a_rect.y() + a_rect.height() - bottom_right_radius,
a_rect.width() - bottom_left_radius - bottom_right_radius,
bottom_right_radius
};
IntRect left_rect {
a_rect.x(),
a_rect.y() + top_left_radius,
bottom_left_radius,
a_rect.height() - top_left_radius - bottom_left_radius
};
IntRect inner = {
left_rect.x() + left_rect.width(),
left_rect.y(),
a_rect.width() - left_rect.width() - right_rect.width(),
a_rect.height() - top_rect.height() - bottom_rect.height()
};
m_underlying_painter.fill_rect(top_rect, color);
m_underlying_painter.fill_rect(right_rect, color);
m_underlying_painter.fill_rect(bottom_rect, color);
m_underlying_painter.fill_rect(left_rect, color);
m_underlying_painter.fill_rect(inner, color);
// FIXME: Don't draw a whole circle each time
if (top_left_radius)
draw_circle(top_left_corner, top_left_radius, color);
if (top_right_radius)
draw_circle(top_right_corner, top_right_radius, color);
if (bottom_left_radius)
draw_circle(bottom_left_corner, bottom_left_radius, color);
if (bottom_right_radius)
draw_circle(bottom_right_corner, bottom_right_radius, color);
}