ladybird/Userland/DevTools/UserspaceEmulator/MallocTracer.cpp
Andreas Kling ef1e5db1d0 Everywhere: Remove klog(), dbg() and purge all LogStream usage :^)
Good-bye LogStream. Long live AK::Format!
2021-03-12 17:29:37 +01:00

391 lines
16 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "MallocTracer.h"
#include "Emulator.h"
#include "MmapRegion.h"
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <mallocdefs.h>
#include <string.h>
#include <unistd.h>
namespace UserspaceEmulator {
MallocTracer::MallocTracer(Emulator& emulator)
: m_emulator(emulator)
{
}
template<typename Callback>
inline void MallocTracer::for_each_mallocation(Callback callback) const
{
m_emulator.mmu().for_each_region([&](auto& region) {
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block()) {
auto* malloc_data = static_cast<MmapRegion&>(region).malloc_metadata();
for (auto& mallocation : malloc_data->mallocations) {
if (mallocation.used && callback(mallocation) == IterationDecision::Break)
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
}
void MallocTracer::target_did_malloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
memset(shadow_bits, 0, size);
if (auto* existing_mallocation = find_mallocation(address)) {
VERIFY(existing_mallocation->freed);
existing_mallocation->size = size;
existing_mallocation->freed = false;
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
existing_mallocation->free_backtrace.clear();
return;
}
if (!mmap_region.is_malloc_block()) {
auto chunk_size = mmap_region.read32(offsetof(CommonHeader, m_size)).value();
mmap_region.set_malloc_metadata({},
adopt_own(*new MallocRegionMetadata {
.region = mmap_region,
.address = mmap_region.base(),
.chunk_size = chunk_size,
.mallocations = {},
}));
auto& malloc_data = *mmap_region.malloc_metadata();
bool is_chunked_block = malloc_data.chunk_size <= size_classes[num_size_classes - 1];
if (is_chunked_block)
malloc_data.mallocations.resize((ChunkedBlock::block_size - sizeof(ChunkedBlock)) / malloc_data.chunk_size);
else
malloc_data.mallocations.resize(1);
// Mark the containing mmap region as a malloc block!
mmap_region.set_malloc(true);
}
auto* mallocation = mmap_region.malloc_metadata()->mallocation_for_address(address);
VERIFY(mallocation);
*mallocation = { address, size, true, false, m_emulator.raw_backtrace(), Vector<FlatPtr>() };
}
ALWAYS_INLINE Mallocation* MallocRegionMetadata::mallocation_for_address(FlatPtr address) const
{
auto index = chunk_index_for_address(address);
if (!index.has_value())
return nullptr;
return &const_cast<Mallocation&>(this->mallocations[index.value()]);
}
ALWAYS_INLINE Optional<size_t> MallocRegionMetadata::chunk_index_for_address(FlatPtr address) const
{
bool is_chunked_block = chunk_size <= size_classes[num_size_classes - 1];
if (!is_chunked_block) {
// This is a BigAllocationBlock
return 0;
}
auto offset_into_block = address - this->address;
if (offset_into_block < sizeof(ChunkedBlock))
return 0;
auto chunk_offset = offset_into_block - sizeof(ChunkedBlock);
auto chunk_index = chunk_offset / this->chunk_size;
if (chunk_index >= mallocations.size())
return {};
return chunk_index;
}
void MallocTracer::target_did_free(Badge<Emulator>, FlatPtr address)
{
if (!address)
return;
if (m_emulator.is_in_loader_code())
return;
if (auto* mallocation = find_mallocation(address)) {
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mDouble free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has already been passed to free()", getpid(), address);
m_emulator.dump_backtrace();
} else {
mallocation->freed = true;
mallocation->free_backtrace = m_emulator.raw_backtrace();
}
return;
}
reportln("\n=={}== \033[31;1mInvalid free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has never been returned by malloc()", getpid(), address);
m_emulator.dump_backtrace();
}
void MallocTracer::target_did_realloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
VERIFY(mmap_region.is_malloc_block());
auto* existing_mallocation = find_mallocation(address);
VERIFY(existing_mallocation);
VERIFY(!existing_mallocation->freed);
size_t old_size = existing_mallocation->size;
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
if (size > old_size) {
memset(shadow_bits + old_size, 1, size - old_size);
} else {
memset(shadow_bits + size, 1, old_size - size);
}
existing_mallocation->size = size;
// FIXME: Should we track malloc/realloc backtrace separately perhaps?
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
}
Mallocation* MallocTracer::find_mallocation(FlatPtr address)
{
auto* region = m_emulator.mmu().find_region({ 0x23, address });
if (!region)
return nullptr;
return find_mallocation(*region, address);
}
Mallocation* MallocTracer::find_mallocation_before(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address >= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address > found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
Mallocation* MallocTracer::find_mallocation_after(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address <= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address < found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
void MallocTracer::audit_read(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free() || m_emulator.is_in_libsystem()) {
return;
}
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::audit_write(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free())
return;
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
bool MallocTracer::is_reachable(const Mallocation& mallocation) const
{
VERIFY(!mallocation.freed);
bool reachable = false;
// 1. Search in active (non-freed) mallocations for pointers to this mallocation
for_each_mallocation([&](auto& other_mallocation) {
if (&mallocation == &other_mallocation)
return IterationDecision::Continue;
if (other_mallocation.freed)
return IterationDecision::Continue;
size_t pointers_in_mallocation = other_mallocation.size / sizeof(u32);
for (size_t i = 0; i < pointers_in_mallocation; ++i) {
auto value = m_emulator.mmu().read32({ 0x23, other_mallocation.address + i * sizeof(u32) });
if (value.value() == mallocation.address && !value.is_uninitialized()) {
#if REACHABLE_DEBUG
reportln("mallocation {:p} is reachable from other mallocation {:p}", mallocation.address, other_mallocation.address);
#endif
reachable = true;
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
if (reachable)
return true;
// 2. Search in other memory regions for pointers to this mallocation
m_emulator.mmu().for_each_region([&](auto& region) {
// Skip the stack
if (region.is_stack())
return IterationDecision::Continue;
if (region.is_text())
return IterationDecision::Continue;
if (!region.is_readable())
return IterationDecision::Continue;
// Skip malloc blocks
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block())
return IterationDecision::Continue;
size_t pointers_in_region = region.size() / sizeof(u32);
for (size_t i = 0; i < pointers_in_region; ++i) {
auto value = region.read32(i * sizeof(u32));
if (value.value() == mallocation.address && !value.is_uninitialized()) {
#if REACHABLE_DEBUG
reportln("mallocation {:p} is reachable from region {:p}-{:p}", mallocation.address, region.base(), region.end() - 1);
#endif
reachable = true;
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
return reachable;
}
void MallocTracer::dump_leak_report()
{
TemporaryChange change(m_auditing_enabled, false);
size_t bytes_leaked = 0;
size_t leaks_found = 0;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
if (is_reachable(mallocation))
return IterationDecision::Continue;
++leaks_found;
bytes_leaked += mallocation.size;
reportln("\n=={}== \033[31;1mLeak\033[0m, {}-byte allocation at address {:p}", getpid(), mallocation.size, mallocation.address);
m_emulator.dump_backtrace(mallocation.malloc_backtrace);
return IterationDecision::Continue;
});
if (!leaks_found)
reportln("\n=={}== \033[32;1mNo leaks found!\033[0m", getpid());
else
reportln("\n=={}== \033[31;1m{} leak(s) found: {} byte(s) leaked\033[0m", getpid(), leaks_found, bytes_leaked);
}
}