ladybird/Userland/Libraries/LibCompress/Gzip.cpp

250 lines
6.7 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibCompress/Gzip.h>
#include <AK/MemoryStream.h>
#include <AK/String.h>
namespace Compress {
bool GzipDecompressor::is_likely_compressed(ReadonlyBytes bytes)
{
return bytes.size() >= 2 && bytes[0] == gzip_magic_1 && bytes[1] == gzip_magic_2;
}
bool BlockHeader::valid_magic_number() const
{
return identification_1 == gzip_magic_1 && identification_2 == gzip_magic_2;
}
bool BlockHeader::supported_by_implementation() const
{
if (compression_method != 0x08) {
// RFC 1952 does not define any compression methods other than deflate.
return false;
}
if (flags > Flags::MAX) {
// RFC 1952 does not define any more flags.
return false;
}
return true;
}
GzipDecompressor::GzipDecompressor(InputStream& stream)
: m_input_stream(stream)
{
}
GzipDecompressor::~GzipDecompressor()
{
m_current_member.clear();
}
// FIXME: Again, there are surely a ton of bugs because the code doesn't check for read errors.
size_t GzipDecompressor::read(Bytes bytes)
{
size_t total_read = 0;
while (total_read < bytes.size()) {
if (has_any_error() || m_eof)
break;
auto slice = bytes.slice(total_read);
if (m_current_member.has_value()) {
size_t nread = current_member().m_stream.read(slice);
current_member().m_checksum.update(slice.trim(nread));
current_member().m_nread += nread;
if (current_member().m_stream.handle_any_error()) {
set_fatal_error();
break;
}
if (nread < slice.size()) {
LittleEndian<u32> crc32, input_size;
m_input_stream >> crc32 >> input_size;
if (crc32 != current_member().m_checksum.digest()) {
// FIXME: Somehow the checksum is incorrect?
set_fatal_error();
break;
}
if (input_size != current_member().m_nread) {
set_fatal_error();
break;
}
m_current_member.clear();
total_read += nread;
continue;
}
total_read += nread;
continue;
} else {
m_partial_header_offset += m_input_stream.read(Bytes { m_partial_header, sizeof(BlockHeader) }.slice(m_partial_header_offset));
if (m_input_stream.handle_any_error() || m_input_stream.unreliable_eof()) {
m_eof = true;
break;
}
if (m_partial_header_offset < sizeof(BlockHeader)) {
break; // partial header read
}
m_partial_header_offset = 0;
BlockHeader header = *(reinterpret_cast<BlockHeader*>(m_partial_header));
if (!header.valid_magic_number() || !header.supported_by_implementation()) {
set_fatal_error();
break;
}
if (header.flags & Flags::FEXTRA) {
LittleEndian<u16> subfield_id, length;
m_input_stream >> subfield_id >> length;
m_input_stream.discard_or_error(length);
}
if (header.flags & Flags::FNAME) {
String original_filename;
m_input_stream >> original_filename;
}
if (header.flags & Flags::FCOMMENT) {
String comment;
m_input_stream >> comment;
}
if (header.flags & Flags::FHCRC) {
LittleEndian<u16> crc16;
m_input_stream >> crc16;
// FIXME: we should probably verify this instead of just assuming it matches
}
m_current_member.emplace(header, m_input_stream);
continue;
}
}
return total_read;
}
bool GzipDecompressor::read_or_error(Bytes bytes)
{
if (read(bytes) < bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
bool GzipDecompressor::discard_or_error(size_t count)
{
u8 buffer[4096];
size_t ndiscarded = 0;
while (ndiscarded < count) {
if (unreliable_eof()) {
set_fatal_error();
return false;
}
ndiscarded += read({ buffer, min<size_t>(count - ndiscarded, sizeof(buffer)) });
}
return true;
}
Optional<ByteBuffer> GzipDecompressor::decompress_all(ReadonlyBytes bytes)
{
InputMemoryStream memory_stream { bytes };
GzipDecompressor gzip_stream { memory_stream };
DuplexMemoryStream output_stream;
u8 buffer[4096];
while (!gzip_stream.has_any_error() && !gzip_stream.unreliable_eof()) {
const auto nread = gzip_stream.read({ buffer, sizeof(buffer) });
output_stream.write_or_error({ buffer, nread });
}
if (gzip_stream.handle_any_error())
return {};
return output_stream.copy_into_contiguous_buffer();
}
bool GzipDecompressor::unreliable_eof() const { return m_eof; }
bool GzipDecompressor::handle_any_error()
{
bool handled_errors = m_input_stream.handle_any_error();
return Stream::handle_any_error() || handled_errors;
}
GzipCompressor::GzipCompressor(OutputStream& stream)
: m_output_stream(stream)
{
}
GzipCompressor::~GzipCompressor()
{
}
size_t GzipCompressor::write(ReadonlyBytes bytes)
{
BlockHeader header;
header.identification_1 = 0x1f;
header.identification_2 = 0x8b;
header.compression_method = 0x08;
header.flags = 0;
header.modification_time = 0;
header.extra_flags = 3; // DEFLATE sets 2 for maximum compression and 4 for minimum compression
header.operating_system = 3; // unix
m_output_stream << Bytes { &header, sizeof(header) };
DeflateCompressor compressed_stream { m_output_stream };
VERIFY(compressed_stream.write_or_error(bytes));
compressed_stream.final_flush();
Crypto::Checksum::CRC32 crc32;
crc32.update(bytes);
LittleEndian<u32> digest = crc32.digest();
LittleEndian<u32> size = bytes.size();
m_output_stream << digest << size;
return bytes.size();
}
bool GzipCompressor::write_or_error(ReadonlyBytes bytes)
{
if (write(bytes) < bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
Optional<ByteBuffer> GzipCompressor::compress_all(const ReadonlyBytes& bytes)
{
DuplexMemoryStream output_stream;
GzipCompressor gzip_stream { output_stream };
gzip_stream.write_or_error(bytes);
if (gzip_stream.handle_any_error())
return {};
return output_stream.copy_into_contiguous_buffer();
}
}