ladybird/Kernel/MemoryManager.cpp
Andreas Kling a5ffa2eec7 Add a PageDirectory::flush() that does nothing if another PD is active.
This way callers can just flush() every time after making any modification
and the PageDirectory itself will decide if TLB invalidation is necessary.
2018-12-31 20:52:59 +01:00

800 lines
26 KiB
C++

#include "MemoryManager.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <AK/kmalloc.h>
#include "i386.h"
#include "StdLib.h"
#include "Process.h"
#include <LibC/errno_numbers.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
static MemoryManager* s_the;
MemoryManager& MM
{
return *s_the;
}
MemoryManager::MemoryManager()
{
m_kernel_page_directory = make<PageDirectory>(PhysicalAddress(0x4000));
m_page_table_zero = (dword*)0x6000;
m_page_table_one = (dword*)0x7000;
m_next_laddr.set(0xd0000000);
initialize_paging();
}
MemoryManager::~MemoryManager()
{
}
PageDirectory::PageDirectory(PhysicalAddress paddr)
{
kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
m_directory_page = adopt(*new PhysicalPage(paddr));
}
PageDirectory::PageDirectory()
{
MM.populate_page_directory(*this);
}
void MemoryManager::populate_page_directory(PageDirectory& page_directory)
{
page_directory.m_directory_page = allocate_physical_page();
create_identity_mapping(LinearAddress(page_directory.cr3()), PAGE_SIZE);
memset(page_directory.entries(), 0, PAGE_SIZE);
page_directory.entries()[0] = kernel_page_directory().entries()[0];
page_directory.entries()[1] = kernel_page_directory().entries()[1];
}
void MemoryManager::initialize_paging()
{
static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
memset(m_page_table_zero, 0, PAGE_SIZE);
memset(m_page_table_one, 0, PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
#endif
#ifdef MM_DEBUG
dbgprintf("MM: Protect against null dereferences\n");
#endif
// Make null dereferences crash.
map_protected(LinearAddress(0), PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Identity map bottom 4MB\n");
#endif
// The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
#ifdef MM_DEBUG
dbgprintf("MM: 4MB-8MB available for allocation\n");
#endif
// The physical pages 4 MB through 8 MB are available for allocation.
for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
#ifdef MM_DEBUG
dbgprintf("MM: Installing page directory\n");
#endif
asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
asm volatile(
"movl %cr0, %eax\n"
"orl $0x80000001, %eax\n"
"movl %eax, %cr0\n"
);
}
RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
{
ASSERT(!page_directory.m_physical_pages.contains(index));
auto physical_page = allocate_physical_page();
if (!physical_page)
return nullptr;
dword address = physical_page->paddr().get();
create_identity_mapping(LinearAddress(address), PAGE_SIZE);
memset((void*)address, 0, PAGE_SIZE);
page_directory.m_physical_pages.set(index, physical_page.copyRef());
return physical_page;
}
void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte = ensure_pte(kernel_page_directory(), pte_address);
pte.set_physical_page_base(0);
pte.set_user_allowed(false);
pte.set_present(true);
pte.set_writable(true);
flush_tlb(pte_address);
}
}
auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
{
ASSERT_INTERRUPTS_DISABLED();
dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
dword page_table_index = (laddr.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
#endif
if (page_directory_index == 0) {
ASSERT(&page_directory == m_kernel_page_directory.ptr());
pde.setPageTableBase((dword)m_page_table_zero);
pde.set_user_allowed(false);
pde.set_present(true);
pde.set_writable(true);
} else if (page_directory_index == 1) {
ASSERT(&page_directory == m_kernel_page_directory.ptr());
pde.setPageTableBase((dword)m_page_table_one);
pde.set_user_allowed(false);
pde.set_present(true);
pde.set_writable(true);
} else {
auto page_table = allocate_page_table(page_directory, page_directory_index);
#ifdef MM_DEBUG
dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
&page_directory,
&page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
page_directory_index,
laddr.get(),
page_table->paddr().get());
#endif
pde.setPageTableBase(page_table->paddr().get());
pde.set_user_allowed(true);
pde.set_present(true);
pde.set_writable(true);
page_directory.m_physical_pages.set(page_directory_index, move(page_table));
}
}
return PageTableEntry(&pde.pageTableBase()[page_table_index]);
}
void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensure_pte(kernel_page_directory(), pteAddress);
pte.set_physical_page_base(pteAddress.get());
pte.set_user_allowed(false);
pte.set_present(false);
pte.set_writable(false);
flush_tlb(pteAddress);
}
}
void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pteAddress = laddr.offset(offset);
auto pte = ensure_pte(kernel_page_directory(), pteAddress);
pte.set_physical_page_base(pteAddress.get());
pte.set_user_allowed(false);
pte.set_present(true);
pte.set_writable(true);
flush_tlb(pteAddress);
}
}
void MemoryManager::initialize()
{
s_the = new MemoryManager;
}
Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
{
ASSERT_INTERRUPTS_DISABLED();
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
return region.ptr();
}
kprintf("%s(%u) Couldn't find region for L%x\n", process.name().characters(), process.pid(), laddr.get());
return nullptr;
}
bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
auto& vmo = region.vmo();
auto physical_page = allocate_physical_page();
byte* dest_ptr = quickmap_page(*physical_page);
memset(dest_ptr, 0, PAGE_SIZE);
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
#endif
unquickmap_page();
region.cow_map.set(page_index_in_region, false);
vmo.physical_pages()[page_index_in_region] = move(physical_page);
unquickmap_page();
remap_region_page(page_directory, region, page_index_in_region, true);
return true;
}
bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
auto& vmo = region.vmo();
if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
region.cow_map.set(page_index_in_region, false);
remap_region_page(process.page_directory(), region, page_index_in_region, true);
return true;
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page and it's time to COW!\n");
#endif
auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
auto physical_page = allocate_physical_page();
byte* dest_ptr = quickmap_page(*physical_page);
const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
memcpy(dest_ptr, src_ptr, PAGE_SIZE);
vmo.physical_pages()[page_index_in_region] = move(physical_page);
unquickmap_page();
region.cow_map.set(page_index_in_region, false);
remap_region_page(process.page_directory(), region, page_index_in_region, true);
return true;
}
bool Region::page_in(PageDirectory& page_directory)
{
ASSERT(!vmo().is_anonymous());
ASSERT(vmo().vnode());
#ifdef MM_DEBUG
dbgprintf("MM: page_in %u pages\n", page_count());
#endif
for (size_t i = 0; i < page_count(); ++i) {
auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
if (vmo_page.is_null()) {
bool success = MM.page_in_from_vnode(page_directory, *this, i);
if (!success)
return false;
}
MM.remap_region_page(page_directory, *this, i, true);
}
return true;
}
bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
{
auto& vmo = region.vmo();
ASSERT(!vmo.is_anonymous());
ASSERT(vmo.vnode());
auto& vnode = *vmo.vnode();
auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
ASSERT(vmo_page.is_null());
vmo_page = allocate_physical_page();
if (vmo_page.is_null()) {
kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
return false;
}
remap_region_page(page_directory, region, page_index_in_region, true);
byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
#ifdef MM_DEBUG
dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
#endif
sti(); // Oh god here we go...
ASSERT(vnode.core_inode());
auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
if (nread < 0) {
kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread);
return false;
}
if (nread < PAGE_SIZE) {
// If we read less than a page, zero out the rest to avoid leaking uninitialized data.
memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
}
cli();
return true;
}
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
#endif
auto* region = region_from_laddr(*current, fault.laddr());
if (!region) {
kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
return PageFaultResponse::ShouldCrash;
}
auto page_index_in_region = region->page_index_from_address(fault.laddr());
if (fault.is_not_present()) {
if (region->vmo().vnode()) {
dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
return PageFaultResponse::Continue;
} else {
dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
zero_page(*current->m_page_directory, *region, page_index_in_region);
return PageFaultResponse::Continue;
}
} else if (fault.is_protection_violation()) {
if (region->cow_map.get(page_index_in_region)) {
dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
bool success = copy_on_write(*current, *region, page_index_in_region);
ASSERT(success);
return PageFaultResponse::Continue;
}
kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
} else {
ASSERT_NOT_REACHED();
}
return PageFaultResponse::ShouldCrash;
}
RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
{
InterruptDisabler disabler;
if (1 > m_free_physical_pages.size())
return { };
#ifdef MM_DEBUG
dbgprintf("MM: allocate_physical_page vending P%x\n", m_free_physical_pages.last()->paddr().get());
#endif
return m_free_physical_pages.takeLast();
}
void MemoryManager::enter_kernel_paging_scope()
{
InterruptDisabler disabler;
current->m_tss.cr3 = kernel_page_directory().cr3();
asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()):"memory");
}
void MemoryManager::enter_process_paging_scope(Process& process)
{
InterruptDisabler disabler;
current->m_tss.cr3 = process.page_directory().cr3();
asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
}
void MemoryManager::flush_entire_tlb()
{
asm volatile(
"mov %cr3, %eax\n"
"mov %eax, %cr3\n"
);
}
void MemoryManager::flush_tlb(LinearAddress laddr)
{
asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
}
byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
ASSERT_INTERRUPTS_DISABLED();
auto page_laddr = LinearAddress(4 * MB);
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
#endif
return page_laddr.asPtr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
auto page_laddr = LinearAddress(4 * MB);
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
#ifdef MM_DEBUG
auto old_physical_address = pte.physical_page_base();
#endif
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
flush_tlb(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
#endif
}
void MemoryManager::remap_region_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
{
InterruptDisabler disabler;
auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_laddr);
auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
ASSERT(physical_page);
pte.set_physical_page_base(physical_page->paddr().get());
pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
if (region.cow_map.get(page_index_in_region))
pte.set_writable(false);
else
pte.set_writable(region.is_writable);
pte.set_user_allowed(user_allowed);
page_directory.flush(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
#endif
}
void MemoryManager::remap_region(Process& process, Region& region)
{
InterruptDisabler disabler;
map_region_at_address(process.page_directory(), region, region.linearAddress, true);
}
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
{
InterruptDisabler disabler;
auto& vmo = region.vmo();
#ifdef MM_DEBUG
dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
#endif
for (size_t i = 0; i < region.page_count(); ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_laddr);
auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
if (physical_page) {
pte.set_physical_page_base(physical_page->paddr().get());
pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
// FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
if (region.cow_map.get(region.first_page_index() + i))
pte.set_writable(false);
else
pte.set_writable(region.is_writable);
} else {
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(region.is_writable);
}
pte.set_user_allowed(user_allowed);
page_directory.flush(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
}
}
void MemoryManager::unmap_range(PageDirectory& page_directory, LinearAddress laddr, size_t size)
{
ASSERT((size % PAGE_SIZE) == 0);
InterruptDisabler disabler;
size_t numPages = size / PAGE_SIZE;
for (size_t i = 0; i < numPages; ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_laddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
page_directory.flush(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
#endif
}
}
LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
{
ASSERT((size % PAGE_SIZE) == 0);
// FIXME: Recycle ranges!
auto laddr = m_next_laddr;
m_next_laddr.set(m_next_laddr.get() + size);
return laddr;
}
byte* MemoryManager::create_kernel_alias_for_region(Region& region)
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
#endif
auto laddr = allocate_linear_address_range(region.size);
map_region_at_address(kernel_page_directory(), region, laddr, false);
#ifdef MM_DEBUG
dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
#endif
return laddr.asPtr();
}
void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
{
#ifdef MM_DEBUG
dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
#endif
unmap_range(kernel_page_directory(), LinearAddress((dword)addr), region.size);
}
bool MemoryManager::unmap_region(Process& process, Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < region.page_count(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensure_pte(process.page_directory(), laddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
process.page_directory().flush(laddr);
#ifdef MM_DEBUG
auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
#endif
}
return true;
}
bool MemoryManager::map_region(Process& process, Region& region)
{
map_region_at_address(process.page_directory(), region, region.linearAddress, true);
return true;
}
bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
{
dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
if (!pde.is_present())
return false;
auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
if (!pte.is_present())
return false;
if (!pte.is_user_allowed())
return false;
return true;
}
bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
{
dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
if (!pde.is_present())
return false;
auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
if (!pte.is_present())
return false;
if (!pte.is_user_allowed())
return false;
if (!pte.is_writable())
return false;
return true;
}
RetainPtr<Region> Region::clone()
{
InterruptDisabler disabler;
if (is_readable && !is_writable) {
// Create a new region backed by the same VMObject.
return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
}
// Set up a COW region. The parent (this) region becomes COW as well!
for (size_t i = 0; i < page_count(); ++i)
cow_map.set(i, true);
MM.remap_region(*current, *this);
return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
}
Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
: linearAddress(a)
, size(s)
, m_vmo(VMObject::create_anonymous(s))
, name(move(n))
, is_readable(r)
, is_writable(w)
, cow_map(Bitmap::create(m_vmo->page_count(), cow))
{
m_vmo->set_name(name);
MM.register_region(*this);
}
Region::Region(LinearAddress a, size_t s, RetainPtr<Vnode>&& vnode, String&& n, bool r, bool w)
: linearAddress(a)
, size(s)
, m_vmo(VMObject::create_file_backed(move(vnode), s))
, name(move(n))
, is_readable(r)
, is_writable(w)
, cow_map(Bitmap::create(m_vmo->page_count()))
{
MM.register_region(*this);
}
Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
: linearAddress(a)
, size(s)
, m_offset_in_vmo(offset_in_vmo)
, m_vmo(move(vmo))
, name(move(n))
, is_readable(r)
, is_writable(w)
, cow_map(Bitmap::create(m_vmo->page_count(), cow))
{
MM.register_region(*this);
}
Region::~Region()
{
MM.unregister_region(*this);
}
PhysicalPage::PhysicalPage(PhysicalAddress paddr)
: m_paddr(paddr)
{
}
void PhysicalPage::return_to_freelist()
{
InterruptDisabler disabler;
m_retain_count = 1;
MM.m_free_physical_pages.append(adopt(*this));
#ifdef MM_DEBUG
dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
#endif
}
RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Vnode>&& vnode, size_t size)
{
InterruptDisabler disabler;
if (vnode->vmo())
return static_cast<VMObject*>(vnode->vmo());
size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
auto vmo = adopt(*new VMObject(move(vnode), size));
vmo->vnode()->set_vmo(vmo.ptr());
return vmo;
}
RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
{
size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
return adopt(*new VMObject(size));
}
RetainPtr<VMObject> VMObject::clone()
{
return adopt(*new VMObject(*this));
}
VMObject::VMObject(VMObject& other)
: m_name(other.m_name)
, m_anonymous(other.m_anonymous)
, m_vnode_offset(other.m_vnode_offset)
, m_size(other.m_size)
, m_vnode(other.m_vnode)
, m_physical_pages(other.m_physical_pages)
{
MM.register_vmo(*this);
}
VMObject::VMObject(size_t size)
: m_anonymous(true)
, m_size(size)
{
MM.register_vmo(*this);
m_physical_pages.resize(page_count());
}
VMObject::VMObject(RetainPtr<Vnode>&& vnode, size_t size)
: m_size(size)
, m_vnode(move(vnode))
{
m_physical_pages.resize(page_count());
MM.register_vmo(*this);
}
VMObject::~VMObject()
{
if (m_vnode) {
ASSERT(m_vnode->vmo() == this);
m_vnode->set_vmo(nullptr);
}
MM.unregister_vmo(*this);
}
int Region::commit(Process& process)
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit %u pages in at L%x\n", vmo().page_count(), linearAddress.get());
#endif
for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
if (!vmo().physical_pages()[i].is_null())
continue;
auto physical_page = MM.allocate_physical_page();
if (!physical_page) {
kprintf("MM: commit was unable to allocate a physical page\n");
return -ENOMEM;
}
vmo().physical_pages()[i] = move(physical_page);
MM.remap_region_page(process.page_directory(), *this, i, true);
}
return 0;
}
void MemoryManager::register_vmo(VMObject& vmo)
{
InterruptDisabler disabler;
m_vmos.set(&vmo);
}
void MemoryManager::unregister_vmo(VMObject& vmo)
{
InterruptDisabler disabler;
m_vmos.remove(&vmo);
}
void MemoryManager::register_region(Region& region)
{
InterruptDisabler disabler;
m_regions.set(&region);
}
void MemoryManager::unregister_region(Region& region)
{
InterruptDisabler disabler;
m_regions.remove(&region);
}
size_t Region::committed() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
if (m_vmo->physical_pages()[first_page_index() + i])
bytes += PAGE_SIZE;
}
return bytes;
}
PageDirectory::~PageDirectory()
{
ASSERT_INTERRUPTS_DISABLED();
#ifdef MM_DEBUG
dbgprintf("MM: ~PageDirectory K%x\n", this);
#endif
for (auto& it : m_physical_pages) {
auto& page_table = *it.value;
#ifdef MM_DEBUG
dbgprintf("MM: deallocating user page table P%x\n", page_table.paddr().get());
#endif
MM.remove_identity_mapping(LinearAddress(page_table.paddr().get()), PAGE_SIZE);
}
}
void PageDirectory::flush(LinearAddress laddr)
{
if (&current->page_directory() == this)
MM.flush_tlb(laddr);
}