
This is a big and messy change, and here's the gist: - AvaliableSpace is now 2x AvailableSize (width and height) - Layout algorithms are redesigned around the idea of available space - When doing layout across nested formatting contexts, the parent context tells the child context how much space is available for the child's root box in both axes. - "Available space" replaces "containing block width" in most places. - The width and height in a box's UsedValues are considered to be definite after they're assigned to. Marking something as having definite size is no longer a separate step, This probably introduces various regressions, but the big win here is that our layout system now works with available space, just like the specs are written. Fixing issues will be much easier going forward, since you don't need to do nearly as much conversion from "spec logic" to "LibWeb logic" as you previously did.
1157 lines
56 KiB
C++
1157 lines
56 KiB
C++
/*
|
|
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <LibWeb/Dump.h>
|
|
#include <LibWeb/Layout/BlockFormattingContext.h>
|
|
#include <LibWeb/Layout/Box.h>
|
|
#include <LibWeb/Layout/FlexFormattingContext.h>
|
|
#include <LibWeb/Layout/FormattingContext.h>
|
|
#include <LibWeb/Layout/GridFormattingContext.h>
|
|
#include <LibWeb/Layout/ReplacedBox.h>
|
|
#include <LibWeb/Layout/SVGFormattingContext.h>
|
|
#include <LibWeb/Layout/SVGSVGBox.h>
|
|
#include <LibWeb/Layout/TableBox.h>
|
|
#include <LibWeb/Layout/TableCellBox.h>
|
|
#include <LibWeb/Layout/TableFormattingContext.h>
|
|
|
|
namespace Web::Layout {
|
|
|
|
FormattingContext::FormattingContext(Type type, LayoutState& state, Box const& context_box, FormattingContext* parent)
|
|
: m_type(type)
|
|
, m_parent(parent)
|
|
, m_context_box(context_box)
|
|
, m_state(state)
|
|
{
|
|
}
|
|
|
|
FormattingContext::~FormattingContext() = default;
|
|
|
|
void FormattingContext::run_intrinsic_sizing(Box const& box)
|
|
{
|
|
auto& box_state = m_state.get_mutable(box);
|
|
|
|
auto to_available_size = [&](SizeConstraint constraint) {
|
|
if (constraint == SizeConstraint::MinContent)
|
|
return AvailableSize::make_min_content();
|
|
if (constraint == SizeConstraint::MaxContent)
|
|
return AvailableSize::make_max_content();
|
|
return AvailableSize::make_indefinite();
|
|
};
|
|
|
|
auto available_width = to_available_size(box_state.width_constraint);
|
|
auto available_height = to_available_size(box_state.height_constraint);
|
|
|
|
run(box, LayoutMode::IntrinsicSizing, AvailableSpace(available_width, available_height));
|
|
}
|
|
|
|
bool FormattingContext::creates_block_formatting_context(Box const& box)
|
|
{
|
|
if (box.is_root_element())
|
|
return true;
|
|
if (box.is_floating())
|
|
return true;
|
|
if (box.is_absolutely_positioned())
|
|
return true;
|
|
if (box.is_inline_block())
|
|
return true;
|
|
if (is<TableCellBox>(box))
|
|
return true;
|
|
if (box.computed_values().display().is_flex_inside())
|
|
return false;
|
|
|
|
CSS::Overflow overflow_x = box.computed_values().overflow_x();
|
|
if ((overflow_x != CSS::Overflow::Visible) && (overflow_x != CSS::Overflow::Clip))
|
|
return true;
|
|
|
|
CSS::Overflow overflow_y = box.computed_values().overflow_y();
|
|
if ((overflow_y != CSS::Overflow::Visible) && (overflow_y != CSS::Overflow::Clip))
|
|
return true;
|
|
|
|
auto display = box.computed_values().display();
|
|
|
|
if (display.is_flow_root_inside())
|
|
return true;
|
|
|
|
if (box.parent()) {
|
|
auto parent_display = box.parent()->computed_values().display();
|
|
if (parent_display.is_flex_inside()) {
|
|
// FIXME: Flex items (direct children of the element with display: flex or inline-flex) if they are neither flex nor grid nor table containers themselves.
|
|
if (!display.is_flex_inside())
|
|
return true;
|
|
}
|
|
if (parent_display.is_grid_inside()) {
|
|
if (!display.is_grid_inside()) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: table-caption
|
|
// FIXME: anonymous table cells
|
|
// FIXME: Elements with contain: layout, content, or paint.
|
|
// FIXME: multicol
|
|
// FIXME: column-span: all
|
|
return false;
|
|
}
|
|
|
|
OwnPtr<FormattingContext> FormattingContext::create_independent_formatting_context_if_needed(LayoutState& state, Box const& child_box)
|
|
{
|
|
if (child_box.is_replaced_box() && !child_box.can_have_children()) {
|
|
// NOTE: This is a bit strange.
|
|
// Basically, we create a pretend formatting context for replaced elements that does nothing.
|
|
// This allows other formatting contexts to treat them like elements that actually need inside layout
|
|
// without having separate code to handle replaced elements.
|
|
// FIXME: Find a better abstraction for this.
|
|
struct ReplacedFormattingContext : public FormattingContext {
|
|
ReplacedFormattingContext(LayoutState& state, Box const& box)
|
|
: FormattingContext(Type::Block, state, box)
|
|
{
|
|
}
|
|
virtual float automatic_content_height() const override { return 0; };
|
|
virtual void run(Box const&, LayoutMode, AvailableSpace const&) override { }
|
|
};
|
|
return make<ReplacedFormattingContext>(state, child_box);
|
|
}
|
|
|
|
if (!child_box.can_have_children())
|
|
return {};
|
|
|
|
auto child_display = child_box.computed_values().display();
|
|
|
|
if (is<SVGSVGBox>(child_box))
|
|
return make<SVGFormattingContext>(state, child_box, this);
|
|
|
|
if (child_display.is_flex_inside())
|
|
return make<FlexFormattingContext>(state, child_box, this);
|
|
|
|
if (creates_block_formatting_context(child_box))
|
|
return make<BlockFormattingContext>(state, verify_cast<BlockContainer>(child_box), this);
|
|
|
|
if (child_display.is_table_inside())
|
|
return make<TableFormattingContext>(state, verify_cast<TableBox>(child_box), this);
|
|
|
|
if (child_display.is_grid_inside()) {
|
|
return make<GridFormattingContext>(state, verify_cast<BlockContainer>(child_box), this);
|
|
}
|
|
|
|
VERIFY(is_block_formatting_context());
|
|
VERIFY(!child_box.children_are_inline());
|
|
|
|
// The child box is a block container that doesn't create its own BFC.
|
|
// It will be formatted by this BFC.
|
|
if (!child_display.is_flow_inside()) {
|
|
dbgln("FIXME: Child box doesn't create BFC, but inside is also not flow! display={}", child_display.to_string());
|
|
// HACK: Instead of crashing, create a dummy formatting context that does nothing.
|
|
// FIXME: Remove this once it's no longer needed. It currently swallows problem with standalone
|
|
// table-related boxes that don't get fixed up by CSS anonymous table box generation.
|
|
struct DummyFormattingContext : public FormattingContext {
|
|
DummyFormattingContext(LayoutState& state, Box const& box)
|
|
: FormattingContext(Type::Block, state, box)
|
|
{
|
|
}
|
|
virtual float automatic_content_height() const override { return 0; };
|
|
virtual void run(Box const&, LayoutMode, AvailableSpace const&) override { }
|
|
};
|
|
return make<DummyFormattingContext>(state, child_box);
|
|
}
|
|
VERIFY(child_box.is_block_container());
|
|
VERIFY(child_display.is_flow_inside());
|
|
return {};
|
|
}
|
|
|
|
OwnPtr<FormattingContext> FormattingContext::layout_inside(Box const& child_box, LayoutMode layout_mode, AvailableSpace const& available_space)
|
|
{
|
|
{
|
|
// OPTIMIZATION: If we're doing intrinsic sizing and `child_box` has definite size in both axes,
|
|
// we don't need to layout its insides. The size is resolvable without learning
|
|
// the metrics of whatever's inside the box.
|
|
auto const& used_values = m_state.get(child_box);
|
|
if (layout_mode == LayoutMode::IntrinsicSizing
|
|
&& used_values.width_constraint == SizeConstraint::None
|
|
&& used_values.height_constraint == SizeConstraint::None
|
|
&& used_values.has_definite_width()
|
|
&& used_values.has_definite_height()) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (!child_box.can_have_children())
|
|
return {};
|
|
|
|
auto independent_formatting_context = create_independent_formatting_context_if_needed(m_state, child_box);
|
|
if (independent_formatting_context)
|
|
independent_formatting_context->run(child_box, layout_mode, available_space);
|
|
else
|
|
run(child_box, layout_mode, available_space);
|
|
|
|
return independent_formatting_context;
|
|
}
|
|
|
|
float FormattingContext::greatest_child_width(Box const& box)
|
|
{
|
|
float max_width = 0;
|
|
if (box.children_are_inline()) {
|
|
for (auto& line_box : m_state.get(verify_cast<BlockContainer>(box)).line_boxes) {
|
|
max_width = max(max_width, line_box.width());
|
|
}
|
|
} else {
|
|
box.for_each_child_of_type<Box>([&](Box const& child) {
|
|
if (!child.is_absolutely_positioned())
|
|
max_width = max(max_width, m_state.get(child).border_box_width());
|
|
});
|
|
}
|
|
return max_width;
|
|
}
|
|
|
|
FormattingContext::ShrinkToFitResult FormattingContext::calculate_shrink_to_fit_widths(Box const& box)
|
|
{
|
|
return {
|
|
.preferred_width = calculate_max_content_width(box),
|
|
.preferred_minimum_width = calculate_min_content_width(box),
|
|
};
|
|
}
|
|
|
|
static Gfx::FloatSize solve_replaced_size_constraint(LayoutState const& state, float w, float h, ReplacedBox const& box)
|
|
{
|
|
// 10.4 Minimum and maximum widths: 'min-width' and 'max-width'
|
|
|
|
auto const& containing_block = *box.containing_block();
|
|
auto const& containing_block_state = state.get(containing_block);
|
|
auto width_of_containing_block = CSS::Length::make_px(containing_block_state.content_width());
|
|
auto height_of_containing_block = CSS::Length::make_px(containing_block_state.content_height());
|
|
|
|
auto specified_min_width = box.computed_values().min_width().is_auto() ? 0 : box.computed_values().min_width().resolved(box, width_of_containing_block).to_px(box);
|
|
auto specified_max_width = box.computed_values().max_width().is_none() ? w : box.computed_values().max_width().resolved(box, width_of_containing_block).to_px(box);
|
|
auto specified_min_height = box.computed_values().min_height().is_auto() ? 0 : box.computed_values().min_height().resolved(box, height_of_containing_block).to_px(box);
|
|
auto specified_max_height = box.computed_values().max_height().is_none() ? h : box.computed_values().max_height().resolved(box, height_of_containing_block).to_px(box);
|
|
|
|
auto min_width = min(specified_min_width, specified_max_width);
|
|
auto max_width = max(specified_min_width, specified_max_width);
|
|
auto min_height = min(specified_min_height, specified_max_height);
|
|
auto max_height = max(specified_min_height, specified_max_height);
|
|
|
|
if (w > max_width)
|
|
return { w, max(max_width * h / w, min_height) };
|
|
if (w < min_width)
|
|
return { max_width, min(min_width * h / w, max_height) };
|
|
if (h > max_height)
|
|
return { max(max_height * w / h, min_width), max_height };
|
|
if (h < min_height)
|
|
return { min(min_height * w / h, max_width), min_height };
|
|
if ((w > max_width && h > max_height) && (max_width / w < max_height / h))
|
|
return { max_width, max(min_height, max_width * h / w) };
|
|
if ((w > max_width && h > max_height) && (max_width / w > max_height / h))
|
|
return { max(min_width, max_height * w / h), max_height };
|
|
if ((w < min_width && h < min_height) && (min_width / w < min_height / h))
|
|
return { min(max_width, min_height * w / h), min_height };
|
|
if ((w < min_width && h < min_height) && (min_width / w > min_height / h))
|
|
return { min_width, min(max_height, min_width * h / w) };
|
|
if (w < min_width && h > max_height)
|
|
return { min_width, max_height };
|
|
if (w > max_width && h < min_height)
|
|
return { max_width, min_height };
|
|
return { w, h };
|
|
}
|
|
|
|
float FormattingContext::compute_auto_height_for_block_level_element(Box const& box) const
|
|
{
|
|
if (creates_block_formatting_context(box))
|
|
return compute_auto_height_for_block_formatting_context_root(verify_cast<BlockContainer>(box));
|
|
|
|
auto const& box_state = m_state.get(box);
|
|
|
|
auto display = box.computed_values().display();
|
|
if (display.is_flex_inside()) {
|
|
// https://drafts.csswg.org/css-flexbox-1/#algo-main-container
|
|
// NOTE: The automatic block size of a block-level flex container is its max-content size.
|
|
return calculate_max_content_height(box);
|
|
}
|
|
|
|
// https://www.w3.org/TR/CSS22/visudet.html#normal-block
|
|
// 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
|
|
|
|
// The element's height is the distance from its top content edge to the first applicable of the following:
|
|
|
|
// 1. the bottom edge of the last line box, if the box establishes a inline formatting context with one or more lines
|
|
if (box.children_are_inline() && !box_state.line_boxes.is_empty())
|
|
return box_state.line_boxes.last().bottom();
|
|
|
|
// 2. the bottom edge of the bottom (possibly collapsed) margin of its last in-flow child, if the child's bottom margin does not collapse with the element's bottom margin
|
|
// FIXME: 3. the bottom border edge of the last in-flow child whose top margin doesn't collapse with the element's bottom margin
|
|
if (!box.children_are_inline()) {
|
|
for (auto* child_box = box.last_child_of_type<Box>(); child_box; child_box = child_box->previous_sibling_of_type<Box>()) {
|
|
if (child_box->is_absolutely_positioned() || child_box->is_floating())
|
|
continue;
|
|
|
|
// FIXME: This is hack. If the last child is a list-item marker box, we ignore it for purposes of height calculation.
|
|
// Perhaps markers should not be considered in-flow(?) Perhaps they should always be the first child of the list-item
|
|
// box instead of the last child.
|
|
if (child_box->is_list_item_marker_box())
|
|
continue;
|
|
|
|
auto const& child_box_state = m_state.get(*child_box);
|
|
|
|
// Ignore anonymous block containers with no lines. These don't count as in-flow block boxes.
|
|
if (child_box->is_anonymous() && child_box->is_block_container() && child_box_state.line_boxes.is_empty())
|
|
continue;
|
|
|
|
// FIXME: Handle margin collapsing.
|
|
return max(0.0f, child_box_state.offset.y() + child_box_state.content_height() + child_box_state.margin_box_bottom());
|
|
}
|
|
}
|
|
|
|
// 4. zero, otherwise
|
|
return 0;
|
|
}
|
|
|
|
// https://www.w3.org/TR/CSS22/visudet.html#root-height
|
|
float FormattingContext::compute_auto_height_for_block_formatting_context_root(BlockContainer const& root) const
|
|
{
|
|
// 10.6.7 'Auto' heights for block formatting context roots
|
|
Optional<float> top;
|
|
Optional<float> bottom;
|
|
|
|
if (root.children_are_inline()) {
|
|
// If it only has inline-level children, the height is the distance between
|
|
// the top content edge and the bottom of the bottommost line box.
|
|
auto const& line_boxes = m_state.get(root).line_boxes;
|
|
top = 0;
|
|
if (!line_boxes.is_empty())
|
|
bottom = line_boxes.last().bottom();
|
|
} else {
|
|
// If it has block-level children, the height is the distance between
|
|
// the top margin-edge of the topmost block-level child box
|
|
// and the bottom margin-edge of the bottommost block-level child box.
|
|
root.for_each_child_of_type<Box>([&](Layout::Box& child_box) {
|
|
// Absolutely positioned children are ignored,
|
|
// and relatively positioned boxes are considered without their offset.
|
|
// Note that the child box may be an anonymous block box.
|
|
if (child_box.is_absolutely_positioned())
|
|
return IterationDecision::Continue;
|
|
|
|
// FIXME: This doesn't look right.
|
|
if ((root.computed_values().overflow_y() == CSS::Overflow::Visible) && child_box.is_floating())
|
|
return IterationDecision::Continue;
|
|
|
|
auto const& child_box_state = m_state.get(child_box);
|
|
|
|
float child_box_top = child_box_state.offset.y() - child_box_state.margin_box_top();
|
|
float child_box_bottom = child_box_state.offset.y() + child_box_state.content_height() + child_box_state.margin_box_bottom();
|
|
|
|
if (!top.has_value() || child_box_top < top.value())
|
|
top = child_box_top;
|
|
|
|
if (!bottom.has_value() || child_box_bottom > bottom.value())
|
|
bottom = child_box_bottom;
|
|
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
// In addition, if the element has any floating descendants
|
|
// whose bottom margin edge is below the element's bottom content edge,
|
|
// then the height is increased to include those edges.
|
|
for (auto* floating_box : m_state.get(root).floating_descendants()) {
|
|
// NOTE: Floating box coordinates are relative to their own containing block,
|
|
// which may or may not be the BFC root.
|
|
auto margin_box = margin_box_rect_in_ancestor_coordinate_space(*floating_box, root, m_state);
|
|
float floating_box_bottom_margin_edge = margin_box.bottom() + 1;
|
|
if (!bottom.has_value() || floating_box_bottom_margin_edge > bottom.value())
|
|
bottom = floating_box_bottom_margin_edge;
|
|
}
|
|
|
|
return max(0.0f, bottom.value_or(0) - top.value_or(0));
|
|
}
|
|
|
|
// 10.3.2 Inline, replaced elements, https://www.w3.org/TR/CSS22/visudet.html#inline-replaced-width
|
|
float FormattingContext::tentative_width_for_replaced_element(LayoutState const& state, ReplacedBox const& box, CSS::Size const& computed_width, AvailableSpace const& available_space)
|
|
{
|
|
// Treat percentages of indefinite containing block widths as 0 (the initial width).
|
|
if (computed_width.is_percentage() && !state.get(*box.containing_block()).has_definite_width())
|
|
return 0;
|
|
|
|
auto height_of_containing_block = CSS::Length::make_px(containing_block_height_for(box, state));
|
|
auto const& computed_height = box.computed_values().height();
|
|
|
|
float used_width = computed_width.resolved(box, CSS::Length::make_px(available_space.width.to_px())).to_px(box);
|
|
|
|
// If 'height' and 'width' both have computed values of 'auto' and the element also has an intrinsic width,
|
|
// then that intrinsic width is the used value of 'width'.
|
|
if (computed_height.is_auto() && computed_width.is_auto() && box.has_intrinsic_width())
|
|
return box.intrinsic_width().value();
|
|
|
|
// If 'height' and 'width' both have computed values of 'auto' and the element has no intrinsic width,
|
|
// but does have an intrinsic height and intrinsic ratio;
|
|
// or if 'width' has a computed value of 'auto',
|
|
// 'height' has some other computed value, and the element does have an intrinsic ratio; then the used value of 'width' is:
|
|
//
|
|
// (used height) * (intrinsic ratio)
|
|
if ((computed_height.is_auto() && computed_width.is_auto() && !box.has_intrinsic_width() && box.has_intrinsic_height() && box.has_intrinsic_aspect_ratio())
|
|
|| (computed_width.is_auto() && !computed_height.is_auto() && box.has_intrinsic_aspect_ratio())) {
|
|
return compute_height_for_replaced_element(state, box, available_space) * box.intrinsic_aspect_ratio().value();
|
|
}
|
|
|
|
// If 'height' and 'width' both have computed values of 'auto' and the element has an intrinsic ratio but no intrinsic height or width,
|
|
// then the used value of 'width' is undefined in CSS 2.2. However, it is suggested that, if the containing block's width does not itself
|
|
// depend on the replaced element's width, then the used value of 'width' is calculated from the constraint equation used for block-level,
|
|
// non-replaced elements in normal flow.
|
|
|
|
// Otherwise, if 'width' has a computed value of 'auto', and the element has an intrinsic width, then that intrinsic width is the used value of 'width'.
|
|
if (computed_width.is_auto() && box.has_intrinsic_width())
|
|
return box.intrinsic_width().value();
|
|
|
|
// Otherwise, if 'width' has a computed value of 'auto', but none of the conditions above are met, then the used value of 'width' becomes 300px.
|
|
// If 300px is too wide to fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio and fits the device instead.
|
|
if (computed_width.is_auto())
|
|
return 300;
|
|
|
|
return used_width;
|
|
}
|
|
|
|
void FormattingContext::compute_width_for_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
|
|
{
|
|
if (is<ReplacedBox>(box))
|
|
compute_width_for_absolutely_positioned_replaced_element(verify_cast<ReplacedBox>(box), available_space);
|
|
else
|
|
compute_width_for_absolutely_positioned_non_replaced_element(box, available_space);
|
|
}
|
|
|
|
void FormattingContext::compute_height_for_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
|
|
{
|
|
if (is<ReplacedBox>(box))
|
|
compute_height_for_absolutely_positioned_replaced_element(static_cast<ReplacedBox const&>(box), available_space);
|
|
else
|
|
compute_height_for_absolutely_positioned_non_replaced_element(box, available_space);
|
|
}
|
|
|
|
float FormattingContext::compute_width_for_replaced_element(LayoutState const& state, ReplacedBox const& box, AvailableSpace const& available_space)
|
|
{
|
|
// 10.3.4 Block-level, replaced elements in normal flow...
|
|
// 10.3.2 Inline, replaced elements
|
|
|
|
auto zero_value = CSS::Length::make_px(0);
|
|
auto width_of_containing_block_as_length = CSS::Length::make_px(available_space.width.to_px());
|
|
|
|
auto margin_left = box.computed_values().margin().left().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
auto margin_right = box.computed_values().margin().right().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
|
|
// A computed value of 'auto' for 'margin-left' or 'margin-right' becomes a used value of '0'.
|
|
if (margin_left.is_auto())
|
|
margin_left = zero_value;
|
|
if (margin_right.is_auto())
|
|
margin_right = zero_value;
|
|
|
|
auto computed_width = box.computed_values().width();
|
|
|
|
// 1. The tentative used width is calculated (without 'min-width' and 'max-width')
|
|
auto used_width = tentative_width_for_replaced_element(state, box, computed_width, available_space);
|
|
|
|
// 2. The tentative used width is greater than 'max-width', the rules above are applied again,
|
|
// but this time using the computed value of 'max-width' as the computed value for 'width'.
|
|
auto computed_max_width = box.computed_values().max_width();
|
|
if (!computed_max_width.is_none()) {
|
|
if (used_width > computed_max_width.resolved(box, width_of_containing_block_as_length).to_px(box)) {
|
|
used_width = tentative_width_for_replaced_element(state, box, computed_max_width, available_space);
|
|
}
|
|
}
|
|
|
|
// 3. If the resulting width is smaller than 'min-width', the rules above are applied again,
|
|
// but this time using the value of 'min-width' as the computed value for 'width'.
|
|
auto computed_min_width = box.computed_values().min_width();
|
|
if (!computed_min_width.is_auto()) {
|
|
if (used_width < computed_min_width.resolved(box, width_of_containing_block_as_length).to_px(box)) {
|
|
used_width = tentative_width_for_replaced_element(state, box, computed_min_width, available_space);
|
|
}
|
|
}
|
|
|
|
return used_width;
|
|
}
|
|
|
|
// 10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
|
|
// https://www.w3.org/TR/CSS22/visudet.html#inline-replaced-height
|
|
float FormattingContext::tentative_height_for_replaced_element(LayoutState const& state, ReplacedBox const& box, CSS::Size const& computed_height, AvailableSpace const& available_space)
|
|
{
|
|
// Treat percentages of indefinite containing block heights as 0 (the initial height).
|
|
if (computed_height.is_percentage() && !state.get(*box.containing_block()).has_definite_height())
|
|
return 0;
|
|
|
|
auto const& computed_width = box.computed_values().width();
|
|
|
|
// If 'height' and 'width' both have computed values of 'auto' and the element also has
|
|
// an intrinsic height, then that intrinsic height is the used value of 'height'.
|
|
if (computed_width.is_auto() && computed_height.is_auto() && box.has_intrinsic_height())
|
|
return box.intrinsic_height().value();
|
|
|
|
// Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic ratio then the used value of 'height' is:
|
|
//
|
|
// (used width) / (intrinsic ratio)
|
|
if (computed_height.is_auto() && box.has_intrinsic_aspect_ratio())
|
|
return compute_width_for_replaced_element(state, box, available_space) / box.intrinsic_aspect_ratio().value();
|
|
|
|
// Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic height, then that intrinsic height is the used value of 'height'.
|
|
if (computed_height.is_auto() && box.has_intrinsic_height())
|
|
return box.intrinsic_height().value();
|
|
|
|
// Otherwise, if 'height' has a computed value of 'auto', but none of the conditions above are met,
|
|
// then the used value of 'height' must be set to the height of the largest rectangle that has a 2:1 ratio, has a height not greater than 150px,
|
|
// and has a width not greater than the device width.
|
|
if (computed_height.is_auto())
|
|
return 150;
|
|
|
|
return computed_height.resolved(box, CSS::Length::make_px(available_space.height.to_px())).to_px(box);
|
|
}
|
|
|
|
float FormattingContext::compute_height_for_replaced_element(LayoutState const& state, ReplacedBox const& box, AvailableSpace const& available_space)
|
|
{
|
|
// 10.6.2 Inline replaced elements, block-level replaced elements in normal flow,
|
|
// 'inline-block' replaced elements in normal flow and floating replaced elements
|
|
|
|
auto width_of_containing_block_as_length = CSS::Length::make_px(available_space.width.to_px());
|
|
auto height_of_containing_block_as_length = CSS::Length::make_px(available_space.height.to_px());
|
|
auto computed_width = box.computed_values().width();
|
|
auto computed_height = box.computed_values().height();
|
|
|
|
float used_height = tentative_height_for_replaced_element(state, box, computed_height, available_space);
|
|
|
|
if (computed_width.is_auto() && computed_height.is_auto() && box.has_intrinsic_aspect_ratio()) {
|
|
float w = tentative_width_for_replaced_element(state, box, computed_width, available_space);
|
|
float h = used_height;
|
|
used_height = solve_replaced_size_constraint(state, w, h, box).height();
|
|
}
|
|
|
|
return used_height;
|
|
}
|
|
|
|
void FormattingContext::compute_width_for_absolutely_positioned_non_replaced_element(Box const& box, AvailableSpace const& available_space)
|
|
{
|
|
auto width_of_containing_block = available_space.width.to_px();
|
|
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
|
|
auto& computed_values = box.computed_values();
|
|
auto zero_value = CSS::Length::make_px(0);
|
|
|
|
auto margin_left = CSS::Length::make_auto();
|
|
auto margin_right = CSS::Length::make_auto();
|
|
auto const border_left = computed_values.border_left().width;
|
|
auto const border_right = computed_values.border_right().width;
|
|
auto const padding_left = computed_values.padding().left().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
auto const padding_right = computed_values.padding().right().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
|
|
auto try_compute_width = [&](auto const& a_width) {
|
|
margin_left = computed_values.margin().left().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
margin_right = computed_values.margin().right().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
|
|
auto left = computed_values.inset().left().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
auto right = computed_values.inset().right().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
auto width = a_width;
|
|
|
|
auto solve_for_left = [&] {
|
|
return CSS::Length(width_of_containing_block - margin_left.to_px(box) - border_left - padding_left - width.to_px(box) - padding_right - border_right - margin_right.to_px(box) - right.to_px(box), CSS::Length::Type::Px);
|
|
};
|
|
|
|
auto solve_for_width = [&] {
|
|
return CSS::Length(width_of_containing_block - left.to_px(box) - margin_left.to_px(box) - border_left - padding_left - padding_right - border_right - margin_right.to_px(box) - right.to_px(box), CSS::Length::Type::Px);
|
|
};
|
|
|
|
auto solve_for_right = [&] {
|
|
return CSS::Length(width_of_containing_block - left.to_px(box) - margin_left.to_px(box) - border_left - padding_left - width.to_px(box) - padding_right - border_right - margin_right.to_px(box), CSS::Length::Type::Px);
|
|
};
|
|
|
|
// If all three of 'left', 'width', and 'right' are 'auto':
|
|
if (left.is_auto() && width.is_auto() && right.is_auto()) {
|
|
// First set any 'auto' values for 'margin-left' and 'margin-right' to 0.
|
|
if (margin_left.is_auto())
|
|
margin_left = CSS::Length::make_px(0);
|
|
if (margin_right.is_auto())
|
|
margin_right = CSS::Length::make_px(0);
|
|
// Then, if the 'direction' property of the element establishing the static-position containing block
|
|
// is 'ltr' set 'left' to the static position and apply rule number three below;
|
|
// otherwise, set 'right' to the static position and apply rule number one below.
|
|
// FIXME: This is very hackish.
|
|
left = CSS::Length::make_px(0);
|
|
goto Rule3;
|
|
}
|
|
|
|
if (!left.is_auto() && !width.is_auto() && !right.is_auto()) {
|
|
// FIXME: This should be solved in a more complicated way.
|
|
return width;
|
|
}
|
|
|
|
if (margin_left.is_auto())
|
|
margin_left = CSS::Length::make_px(0);
|
|
if (margin_right.is_auto())
|
|
margin_right = CSS::Length::make_px(0);
|
|
|
|
// 1. 'left' and 'width' are 'auto' and 'right' is not 'auto',
|
|
// then the width is shrink-to-fit. Then solve for 'left'
|
|
if (left.is_auto() && width.is_auto() && !right.is_auto()) {
|
|
auto result = calculate_shrink_to_fit_widths(box);
|
|
solve_for_left();
|
|
auto available_width = solve_for_width();
|
|
width = CSS::Length(min(max(result.preferred_minimum_width, available_width.to_px(box)), result.preferred_width), CSS::Length::Type::Px);
|
|
}
|
|
|
|
// 2. 'left' and 'right' are 'auto' and 'width' is not 'auto',
|
|
// then if the 'direction' property of the element establishing
|
|
// the static-position containing block is 'ltr' set 'left'
|
|
// to the static position, otherwise set 'right' to the static position.
|
|
// Then solve for 'left' (if 'direction is 'rtl') or 'right' (if 'direction' is 'ltr').
|
|
else if (left.is_auto() && right.is_auto() && !width.is_auto()) {
|
|
// FIXME: Check direction
|
|
// FIXME: Use the static-position containing block
|
|
left = zero_value;
|
|
right = solve_for_right();
|
|
}
|
|
|
|
// 3. 'width' and 'right' are 'auto' and 'left' is not 'auto',
|
|
// then the width is shrink-to-fit. Then solve for 'right'
|
|
else if (width.is_auto() && right.is_auto() && !left.is_auto()) {
|
|
Rule3:
|
|
auto result = calculate_shrink_to_fit_widths(box);
|
|
auto available_width = solve_for_width();
|
|
width = CSS::Length(min(max(result.preferred_minimum_width, available_width.to_px(box)), result.preferred_width), CSS::Length::Type::Px);
|
|
right = solve_for_right();
|
|
}
|
|
|
|
// 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve for 'left'
|
|
else if (left.is_auto() && !width.is_auto() && !right.is_auto()) {
|
|
left = solve_for_left();
|
|
}
|
|
|
|
// 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve for 'width'
|
|
else if (width.is_auto() && !left.is_auto() && !right.is_auto()) {
|
|
width = solve_for_width();
|
|
}
|
|
|
|
// 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve for 'right'
|
|
else if (right.is_auto() && !left.is_auto() && !width.is_auto()) {
|
|
right = solve_for_right();
|
|
}
|
|
|
|
return width;
|
|
};
|
|
|
|
auto specified_width = computed_values.width().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
|
|
// 1. The tentative used width is calculated (without 'min-width' and 'max-width')
|
|
auto used_width = try_compute_width(specified_width);
|
|
|
|
// 2. The tentative used width is greater than 'max-width', the rules above are applied again,
|
|
// but this time using the computed value of 'max-width' as the computed value for 'width'.
|
|
if (!computed_values.max_width().is_none()) {
|
|
auto max_width = computed_values.max_width().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
if (used_width.to_px(box) > max_width.to_px(box)) {
|
|
used_width = try_compute_width(max_width);
|
|
}
|
|
}
|
|
|
|
// 3. If the resulting width is smaller than 'min-width', the rules above are applied again,
|
|
// but this time using the value of 'min-width' as the computed value for 'width'.
|
|
if (!computed_values.min_width().is_auto()) {
|
|
auto min_width = computed_values.min_width().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
if (used_width.to_px(box) < min_width.to_px(box)) {
|
|
used_width = try_compute_width(min_width);
|
|
}
|
|
}
|
|
|
|
auto& box_state = m_state.get_mutable(box);
|
|
box_state.set_content_width(used_width.to_px(box));
|
|
|
|
box_state.margin_left = margin_left.to_px(box);
|
|
box_state.margin_right = margin_right.to_px(box);
|
|
box_state.border_left = border_left;
|
|
box_state.border_right = border_right;
|
|
box_state.padding_left = padding_left;
|
|
box_state.padding_right = padding_right;
|
|
}
|
|
|
|
void FormattingContext::compute_width_for_absolutely_positioned_replaced_element(ReplacedBox const& box, AvailableSpace const& available_space)
|
|
{
|
|
// 10.3.8 Absolutely positioned, replaced elements
|
|
// The used value of 'width' is determined as for inline replaced elements.
|
|
// FIXME: This const_cast is gross.
|
|
const_cast<ReplacedBox&>(box).prepare_for_replaced_layout();
|
|
m_state.get_mutable(box).set_content_width(compute_width_for_replaced_element(m_state, box, available_space));
|
|
}
|
|
|
|
// https://www.w3.org/TR/CSS22/visudet.html#abs-non-replaced-height
|
|
void FormattingContext::compute_height_for_absolutely_positioned_non_replaced_element(Box const& box, AvailableSpace const& available_space)
|
|
{
|
|
// 10.6.4 Absolutely positioned, non-replaced elements
|
|
|
|
// FIXME: The section below is partly on-spec, partly ad-hoc.
|
|
auto& computed_values = box.computed_values();
|
|
|
|
auto width_of_containing_block = containing_block_width_for(box);
|
|
auto height_of_containing_block = available_space.height.to_px();
|
|
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
|
|
auto height_of_containing_block_as_length = CSS::Length::make_px(height_of_containing_block);
|
|
|
|
auto const& computed_top = computed_values.inset().top();
|
|
auto const& computed_bottom = computed_values.inset().bottom();
|
|
auto const& computed_height = computed_values.height();
|
|
auto const& computed_min_height = computed_values.min_height();
|
|
auto const& computed_max_height = computed_values.max_height();
|
|
|
|
auto used_top = computed_top.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box);
|
|
auto used_bottom = computed_bottom.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box);
|
|
auto tentative_height = CSS::Length::make_auto();
|
|
|
|
if (!computed_height.is_auto())
|
|
tentative_height = computed_values.height().resolved(box, height_of_containing_block_as_length).resolved(box);
|
|
|
|
auto& box_state = m_state.get_mutable(box);
|
|
box_state.margin_top = computed_values.margin().top().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.margin_bottom = computed_values.margin().bottom().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.border_top = computed_values.border_top().width;
|
|
box_state.border_bottom = computed_values.border_bottom().width;
|
|
box_state.padding_top = computed_values.padding().top().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.padding_bottom = computed_values.padding().bottom().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
|
|
if (computed_height.is_auto() && computed_top.is_auto() && computed_bottom.is_auto()) {
|
|
tentative_height = CSS::Length(compute_auto_height_for_block_level_element(box), CSS::Length::Type::Px);
|
|
}
|
|
|
|
else if (computed_height.is_auto() && !computed_top.is_auto() && computed_bottom.is_auto()) {
|
|
tentative_height = CSS::Length(compute_auto_height_for_block_level_element(box), CSS::Length::Type::Px);
|
|
box_state.inset_bottom = height_of_containing_block - tentative_height.to_px(box) - used_top - box_state.margin_top - box_state.padding_top - box_state.border_top - box_state.margin_bottom - box_state.padding_bottom - box_state.border_bottom;
|
|
}
|
|
|
|
else if (computed_height.is_auto() && !computed_top.is_auto() && !computed_bottom.is_auto()) {
|
|
tentative_height = CSS::Length(height_of_containing_block - used_top - box_state.margin_top - box_state.padding_top - box_state.border_top - used_bottom - box_state.margin_bottom - box_state.padding_bottom - box_state.border_bottom, CSS::Length::Type::Px);
|
|
}
|
|
|
|
float used_height = tentative_height.to_px(box);
|
|
if (!computed_max_height.is_none())
|
|
used_height = min(used_height, computed_max_height.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box));
|
|
if (!computed_min_height.is_auto())
|
|
used_height = max(used_height, computed_min_height.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box));
|
|
|
|
box_state.set_content_height(used_height);
|
|
}
|
|
|
|
void FormattingContext::layout_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
|
|
{
|
|
auto& containing_block_state = m_state.get_mutable(*box.containing_block());
|
|
auto& box_state = m_state.get_mutable(box);
|
|
|
|
auto width_of_containing_block = available_space.width.to_px();
|
|
auto height_of_containing_block = available_space.height.to_px();
|
|
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
|
|
auto height_of_containing_block_as_length = CSS::Length::make_px(height_of_containing_block);
|
|
|
|
auto specified_width = box.computed_values().width().resolved(box, width_of_containing_block_as_length).resolved(box);
|
|
|
|
compute_width_for_absolutely_positioned_element(box, available_space);
|
|
auto independent_formatting_context = layout_inside(box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(available_space));
|
|
compute_height_for_absolutely_positioned_element(box, available_space);
|
|
|
|
box_state.margin_left = box.computed_values().margin().left().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.margin_top = box.computed_values().margin().top().resolved(box, height_of_containing_block_as_length).to_px(box);
|
|
box_state.margin_right = box.computed_values().margin().right().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.margin_bottom = box.computed_values().margin().bottom().resolved(box, height_of_containing_block_as_length).to_px(box);
|
|
|
|
box_state.border_left = box.computed_values().border_left().width;
|
|
box_state.border_right = box.computed_values().border_right().width;
|
|
box_state.border_top = box.computed_values().border_top().width;
|
|
box_state.border_bottom = box.computed_values().border_bottom().width;
|
|
|
|
box_state.inset_left = box.computed_values().inset().left().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.inset_top = box.computed_values().inset().top().resolved(box, height_of_containing_block_as_length).to_px(box);
|
|
box_state.inset_right = box.computed_values().inset().right().resolved(box, width_of_containing_block_as_length).to_px(box);
|
|
box_state.inset_bottom = box.computed_values().inset().bottom().resolved(box, height_of_containing_block_as_length).to_px(box);
|
|
|
|
if (box.computed_values().inset().left().is_auto() && box.computed_values().width().is_auto() && box.computed_values().inset().right().is_auto()) {
|
|
if (box.computed_values().margin().left().is_auto())
|
|
box_state.margin_left = 0;
|
|
if (box.computed_values().margin().right().is_auto())
|
|
box_state.margin_right = 0;
|
|
}
|
|
|
|
Gfx::FloatPoint used_offset;
|
|
|
|
auto* relevant_parent = box.first_ancestor_of_type<Layout::BlockContainer>();
|
|
while (relevant_parent != nullptr) {
|
|
if (!relevant_parent->is_absolutely_positioned() && !relevant_parent->is_floating()) {
|
|
break;
|
|
} else {
|
|
relevant_parent = relevant_parent->first_ancestor_of_type<Layout::BlockContainer>();
|
|
}
|
|
}
|
|
auto parent_location = absolute_content_rect(static_cast<Box const&>(*relevant_parent), m_state);
|
|
|
|
if (!box.computed_values().inset().left().is_auto()) {
|
|
float x_offset = box_state.inset_left
|
|
+ box_state.border_box_left();
|
|
used_offset.set_x(x_offset + box_state.margin_left);
|
|
} else if (!box.computed_values().inset().right().is_auto()) {
|
|
float x_offset = 0
|
|
- box_state.inset_right
|
|
- box_state.border_box_right();
|
|
used_offset.set_x(width_of_containing_block + x_offset - box_state.content_width() - box_state.margin_right);
|
|
} else {
|
|
float x_offset = box_state.margin_box_left()
|
|
+ (relevant_parent->computed_values().position() == CSS::Position::Relative ? 0 : parent_location.x());
|
|
used_offset.set_x(x_offset);
|
|
}
|
|
|
|
if (!box.computed_values().inset().top().is_auto()) {
|
|
float y_offset = box_state.inset_top
|
|
+ box_state.border_box_top();
|
|
used_offset.set_y(y_offset + box_state.margin_top);
|
|
} else if (!box.computed_values().inset().bottom().is_auto()) {
|
|
float y_offset = 0
|
|
- box_state.inset_bottom
|
|
- box_state.border_box_bottom();
|
|
used_offset.set_y(height_of_containing_block + y_offset - box_state.content_height() - box_state.margin_bottom);
|
|
} else {
|
|
float y_offset = box_state.margin_box_top()
|
|
+ compute_box_y_position_with_respect_to_siblings(box, box_state)
|
|
+ (relevant_parent->computed_values().position() == CSS::Position::Relative ? 0 : parent_location.y());
|
|
used_offset.set_y(y_offset);
|
|
}
|
|
|
|
// NOTE: Absolutely positioned boxes are relative to the *padding edge* of the containing block.
|
|
used_offset.translate_by(-containing_block_state.padding_left, -containing_block_state.padding_top);
|
|
|
|
box_state.set_content_offset(used_offset);
|
|
|
|
if (independent_formatting_context)
|
|
independent_formatting_context->parent_context_did_dimension_child_root_box();
|
|
}
|
|
|
|
void FormattingContext::compute_height_for_absolutely_positioned_replaced_element(ReplacedBox const& box, AvailableSpace const& available_space)
|
|
{
|
|
// 10.6.5 Absolutely positioned, replaced elements
|
|
// The used value of 'height' is determined as for inline replaced elements.
|
|
m_state.get_mutable(box).set_content_height(compute_height_for_replaced_element(m_state, box, available_space));
|
|
}
|
|
|
|
// https://www.w3.org/TR/css-position-3/#relpos-insets
|
|
void FormattingContext::compute_inset(Box const& box)
|
|
{
|
|
if (box.computed_values().position() != CSS::Position::Relative)
|
|
return;
|
|
|
|
auto resolve_two_opposing_insets = [&](CSS::LengthPercentage const& computed_start, CSS::LengthPercentage const& computed_end, float& used_start, float& used_end, float reference_for_percentage) {
|
|
auto resolved_first = computed_start.resolved(box, CSS::Length::make_px(reference_for_percentage)).resolved(box);
|
|
auto resolved_second = computed_end.resolved(box, CSS::Length::make_px(reference_for_percentage)).resolved(box);
|
|
|
|
if (resolved_first.is_auto() && resolved_second.is_auto()) {
|
|
// If opposing inset properties in an axis both compute to auto (their initial values),
|
|
// their used values are zero (i.e., the boxes stay in their original position in that axis).
|
|
used_start = 0;
|
|
used_end = 0;
|
|
} else if (resolved_first.is_auto() || resolved_second.is_auto()) {
|
|
// If only one is auto, its used value becomes the negation of the other, and the box is shifted by the specified amount.
|
|
if (resolved_first.is_auto()) {
|
|
used_end = resolved_second.to_px(box);
|
|
used_start = 0 - used_end;
|
|
} else {
|
|
used_start = resolved_first.to_px(box);
|
|
used_end = 0 - used_start;
|
|
}
|
|
} else {
|
|
// If neither is auto, the position is over-constrained; (with respect to the writing mode of its containing block)
|
|
// the computed end side value is ignored, and its used value becomes the negation of the start side.
|
|
used_start = resolved_first.to_px(box);
|
|
used_end = 0 - used_start;
|
|
}
|
|
};
|
|
|
|
auto& box_state = m_state.get_mutable(box);
|
|
auto const& computed_values = box.computed_values();
|
|
|
|
// FIXME: Respect the containing block's writing-mode.
|
|
resolve_two_opposing_insets(computed_values.inset().left(), computed_values.inset().right(), box_state.inset_left, box_state.inset_right, containing_block_width_for(box));
|
|
resolve_two_opposing_insets(computed_values.inset().top(), computed_values.inset().bottom(), box_state.inset_top, box_state.inset_bottom, containing_block_height_for(box));
|
|
}
|
|
|
|
float FormattingContext::calculate_fit_content_size(float min_content_size, float max_content_size, AvailableSize const& available_size) const
|
|
{
|
|
// If the available space in a given axis is definite, equal to clamp(min-content size, stretch-fit size, max-content size)
|
|
// (i.e. max(min-content size, min(max-content size, stretch-fit size))).
|
|
if (available_size.is_definite()) {
|
|
// FIXME: Compute the real stretch-fit size.
|
|
auto stretch_fit_size = available_size.to_px();
|
|
auto s = max(min_content_size, min(max_content_size, stretch_fit_size));
|
|
return s;
|
|
}
|
|
|
|
// When sizing under a min-content constraint, equal to the min-content size.
|
|
if (available_size.is_min_content())
|
|
return min_content_size;
|
|
|
|
// Otherwise, equal to the max-content size in that axis.
|
|
return max_content_size;
|
|
}
|
|
|
|
float FormattingContext::calculate_fit_content_width(Layout::Box const& box, AvailableSize const& available_size) const
|
|
{
|
|
// When sizing under a min-content constraint, equal to the min-content size.
|
|
// NOTE: We check this first, to avoid needlessly calculating the max-content size.
|
|
if (available_size.is_min_content())
|
|
return calculate_min_content_width(box);
|
|
|
|
if (available_size.is_max_content())
|
|
return calculate_max_content_width(box);
|
|
|
|
return calculate_fit_content_size(calculate_min_content_width(box), calculate_max_content_width(box), available_size);
|
|
}
|
|
|
|
float FormattingContext::calculate_fit_content_height(Layout::Box const& box, AvailableSize const& available_size) const
|
|
{
|
|
// When sizing under a min-content constraint, equal to the min-content size.
|
|
// NOTE: We check this first, to avoid needlessly calculating the max-content size.
|
|
if (available_size.is_min_content())
|
|
return calculate_min_content_height(box);
|
|
|
|
if (available_size.is_max_content())
|
|
return calculate_max_content_height(box);
|
|
|
|
return calculate_fit_content_size(calculate_min_content_height(box), calculate_max_content_height(box), available_size);
|
|
}
|
|
|
|
float FormattingContext::calculate_min_content_width(Layout::Box const& box) const
|
|
{
|
|
if (box.has_intrinsic_width())
|
|
return *box.intrinsic_width();
|
|
|
|
auto& root_state = m_state.m_root;
|
|
|
|
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
|
|
if (cache.min_content_width.has_value())
|
|
return *cache.min_content_width;
|
|
|
|
LayoutState throwaway_state(&m_state);
|
|
|
|
auto& box_state = throwaway_state.get_mutable(box);
|
|
box_state.width_constraint = SizeConstraint::MinContent;
|
|
|
|
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
|
|
VERIFY(context);
|
|
context->run_intrinsic_sizing(box);
|
|
if (context->type() == FormattingContext::Type::Flex) {
|
|
cache.min_content_width = box_state.content_width();
|
|
} else {
|
|
cache.min_content_width = context->greatest_child_width(box);
|
|
}
|
|
|
|
if (!isfinite(*cache.min_content_width)) {
|
|
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
|
|
dbgln("FIXME: Calculated non-finite min-content width for {}", box.debug_description());
|
|
cache.min_content_width = 0;
|
|
}
|
|
|
|
return *cache.min_content_width;
|
|
}
|
|
|
|
float FormattingContext::calculate_max_content_width(Layout::Box const& box) const
|
|
{
|
|
if (box.has_intrinsic_width())
|
|
return *box.intrinsic_width();
|
|
|
|
auto& root_state = m_state.m_root;
|
|
|
|
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
|
|
if (cache.max_content_width.has_value())
|
|
return *cache.max_content_width;
|
|
|
|
LayoutState throwaway_state(&m_state);
|
|
|
|
auto& box_state = throwaway_state.get_mutable(box);
|
|
box_state.width_constraint = SizeConstraint::MaxContent;
|
|
|
|
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
|
|
VERIFY(context);
|
|
context->run_intrinsic_sizing(box);
|
|
if (context->type() == FormattingContext::Type::Flex) {
|
|
cache.max_content_width = box_state.content_width();
|
|
} else {
|
|
cache.max_content_width = context->greatest_child_width(box);
|
|
}
|
|
|
|
if (!isfinite(*cache.max_content_width)) {
|
|
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
|
|
dbgln("FIXME: Calculated non-finite max-content width for {}", box.debug_description());
|
|
cache.max_content_width = 0;
|
|
}
|
|
|
|
return *cache.max_content_width;
|
|
}
|
|
|
|
float FormattingContext::calculate_min_content_height(Layout::Box const& box) const
|
|
{
|
|
if (box.has_intrinsic_height())
|
|
return *box.intrinsic_height();
|
|
|
|
auto& root_state = m_state.m_root;
|
|
|
|
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
|
|
if (cache.min_content_height.has_value())
|
|
return *cache.min_content_height;
|
|
|
|
LayoutState throwaway_state(&m_state);
|
|
|
|
auto& box_state = throwaway_state.get_mutable(box);
|
|
box_state.height_constraint = SizeConstraint::MinContent;
|
|
|
|
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
|
|
VERIFY(context);
|
|
context->run_intrinsic_sizing(box);
|
|
cache.min_content_height = context->automatic_content_height();
|
|
|
|
if (!isfinite(*cache.min_content_height)) {
|
|
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
|
|
dbgln("FIXME: Calculated non-finite min-content height for {}", box.debug_description());
|
|
cache.min_content_height = 0;
|
|
}
|
|
|
|
return *cache.min_content_height;
|
|
}
|
|
|
|
float FormattingContext::calculate_max_content_height(Layout::Box const& box) const
|
|
{
|
|
if (box.has_intrinsic_height())
|
|
return *box.intrinsic_height();
|
|
|
|
auto& root_state = m_state.m_root;
|
|
|
|
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
|
|
if (cache.max_content_height.has_value())
|
|
return *cache.max_content_height;
|
|
|
|
LayoutState throwaway_state(&m_state);
|
|
|
|
auto& box_state = throwaway_state.get_mutable(box);
|
|
box_state.height_constraint = SizeConstraint::MaxContent;
|
|
|
|
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
|
|
VERIFY(context);
|
|
context->run_intrinsic_sizing(box);
|
|
cache.max_content_height = context->automatic_content_height();
|
|
|
|
if (!isfinite(*cache.max_content_height)) {
|
|
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
|
|
dbgln("FIXME: Calculated non-finite max-content height for {}", box.debug_description());
|
|
cache.max_content_height = 0;
|
|
}
|
|
|
|
return *cache.max_content_height;
|
|
}
|
|
|
|
float FormattingContext::containing_block_width_for(Box const& box, LayoutState const& state)
|
|
{
|
|
auto& containing_block_state = state.get(*box.containing_block());
|
|
auto& box_state = state.get(box);
|
|
|
|
switch (box_state.width_constraint) {
|
|
case SizeConstraint::MinContent:
|
|
return 0;
|
|
case SizeConstraint::MaxContent:
|
|
return INFINITY;
|
|
case SizeConstraint::None:
|
|
return containing_block_state.content_width();
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
float FormattingContext::containing_block_height_for(Box const& box, LayoutState const& state)
|
|
{
|
|
auto& containing_block_state = state.get(*box.containing_block());
|
|
auto& box_state = state.get(box);
|
|
|
|
switch (box_state.height_constraint) {
|
|
case SizeConstraint::MinContent:
|
|
return 0;
|
|
case SizeConstraint::MaxContent:
|
|
return INFINITY;
|
|
case SizeConstraint::None:
|
|
return containing_block_state.content_height();
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
static Box const* previous_block_level_sibling(Box const& box)
|
|
{
|
|
for (auto* sibling = box.previous_sibling_of_type<Box>(); sibling; sibling = sibling->previous_sibling_of_type<Box>()) {
|
|
if (sibling->computed_values().display().is_block_outside())
|
|
return sibling;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
float FormattingContext::compute_box_y_position_with_respect_to_siblings(Box const& child_box, LayoutState::UsedValues const& box_state)
|
|
{
|
|
float y = box_state.border_box_top();
|
|
|
|
Vector<float> collapsible_margins;
|
|
|
|
auto* relevant_sibling = previous_block_level_sibling(child_box);
|
|
while (relevant_sibling != nullptr) {
|
|
if (!relevant_sibling->is_absolutely_positioned() && !relevant_sibling->is_floating()) {
|
|
auto const& relevant_sibling_state = m_state.get(*relevant_sibling);
|
|
collapsible_margins.append(relevant_sibling_state.margin_bottom);
|
|
// NOTE: Empty (0-height) preceding siblings have their margins collapsed with *their* preceding sibling, etc.
|
|
if (relevant_sibling_state.border_box_height() > 0)
|
|
break;
|
|
collapsible_margins.append(relevant_sibling_state.margin_top);
|
|
}
|
|
relevant_sibling = previous_block_level_sibling(*relevant_sibling);
|
|
}
|
|
|
|
if (relevant_sibling) {
|
|
// Collapse top margin with the collapsed margin(s) of preceding siblings.
|
|
collapsible_margins.append(box_state.margin_top);
|
|
|
|
float smallest_margin = 0;
|
|
float largest_margin = 0;
|
|
size_t negative_margin_count = 0;
|
|
for (auto margin : collapsible_margins) {
|
|
if (margin < 0)
|
|
++negative_margin_count;
|
|
largest_margin = max(largest_margin, margin);
|
|
smallest_margin = min(smallest_margin, margin);
|
|
}
|
|
|
|
float collapsed_margin = 0;
|
|
if (negative_margin_count == collapsible_margins.size()) {
|
|
// When all margins are negative, the size of the collapsed margin is the smallest (most negative) margin.
|
|
collapsed_margin = smallest_margin;
|
|
} else if (negative_margin_count > 0) {
|
|
// When negative margins are involved, the size of the collapsed margin is the sum of the largest positive margin and the smallest (most negative) negative margin.
|
|
collapsed_margin = largest_margin + smallest_margin;
|
|
} else {
|
|
// Otherwise, collapse all the adjacent margins by using only the largest one.
|
|
collapsed_margin = largest_margin;
|
|
}
|
|
|
|
auto const& relevant_sibling_state = m_state.get(*relevant_sibling);
|
|
return y + relevant_sibling_state.offset.y()
|
|
+ relevant_sibling_state.content_height()
|
|
+ relevant_sibling_state.border_box_bottom()
|
|
+ collapsed_margin;
|
|
} else {
|
|
return y + box_state.margin_top;
|
|
}
|
|
}
|
|
|
|
// https://drafts.csswg.org/css-sizing-3/#stretch-fit-size
|
|
float FormattingContext::calculate_stretch_fit_width(Box const& box, AvailableSize const& available_width) const
|
|
{
|
|
// The size a box would take if its outer size filled the available space in the given axis;
|
|
// in other words, the stretch fit into the available space, if that is definite.
|
|
// Undefined if the available space is indefinite.
|
|
auto const& box_state = m_state.get(box);
|
|
return available_width.to_px()
|
|
- box_state.margin_left
|
|
- box_state.margin_right
|
|
- box_state.padding_left
|
|
- box_state.padding_right
|
|
- box_state.border_left
|
|
- box_state.border_right;
|
|
}
|
|
|
|
}
|