ladybird/Userland/Libraries/LibJS/Runtime/Object.cpp

1181 lines
42 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/String.h>
#include <AK/TemporaryChange.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/PropertyDescriptor.h>
#include <LibJS/Runtime/ProxyObject.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/TemporaryClearException.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
// 10.1.12 OrdinaryObjectCreate ( proto [ , additionalInternalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinaryobjectcreate
Object* Object::create(GlobalObject& global_object, Object* prototype)
{
if (!prototype)
return global_object.heap().allocate<Object>(global_object, *global_object.empty_object_shape());
else if (prototype == global_object.object_prototype())
return global_object.heap().allocate<Object>(global_object, *global_object.new_object_shape());
else
return global_object.heap().allocate<Object>(global_object, *prototype);
}
Object::Object(GlobalObjectTag)
{
// This is the global object
m_shape = heap().allocate_without_global_object<Shape>(*this);
}
Object::Object(ConstructWithoutPrototypeTag, GlobalObject& global_object)
{
m_shape = heap().allocate_without_global_object<Shape>(global_object);
}
Object::Object(Object& prototype)
{
m_shape = prototype.global_object().empty_object_shape();
set_prototype(&prototype);
}
Object::Object(Shape& shape)
: m_shape(&shape)
{
m_storage.resize(shape.property_count());
}
void Object::initialize(GlobalObject&)
{
}
Object::~Object()
{
}
// 7.2 Testing and Comparison Operations, https://tc39.es/ecma262/#sec-testing-and-comparison-operations
// 7.2.5 IsExtensible ( O ), https://tc39.es/ecma262/#sec-isextensible-o
ThrowCompletionOr<bool> Object::is_extensible() const
{
// 1. Return ? O.[[IsExtensible]]().
return internal_is_extensible();
}
// 7.3 Operations on Objects, https://tc39.es/ecma262/#sec-operations-on-objects
// 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p
Value Object::get(PropertyName const& property_name) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Return ? O.[[Get]](P, O).
return TRY_OR_DISCARD(internal_get(property_name, this));
}
// 7.3.3 GetV ( V, P ) is defined as Value::get().
// 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw
bool Object::set(PropertyName const& property_name, Value value, ShouldThrowExceptions throw_exceptions)
{
VERIFY(!value.is_empty());
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Assert: Type(Throw) is Boolean.
// 4. Let success be ? O.[[Set]](P, V, O).
auto success = TRY_OR_DISCARD(internal_set(property_name, value, this));
// 5. If success is false and Throw is true, throw a TypeError exception.
if (!success && throw_exceptions == ShouldThrowExceptions::Yes) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectSetReturnedFalse);
return {};
}
// 6. Return success.
return success;
}
// 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty
bool Object::create_data_property(PropertyName const& property_name, Value value)
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor {
.value = value,
.writable = true,
.enumerable = true,
.configurable = true,
};
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
return TRY_OR_DISCARD(internal_define_own_property(property_name, new_descriptor));
}
// 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty
bool Object::create_method_property(PropertyName const& property_name, Value value)
{
VERIFY(!value.is_empty());
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor {
.value = value,
.writable = true,
.enumerable = false,
.configurable = true,
};
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
return TRY_OR_DISCARD(internal_define_own_property(property_name, new_descriptor));
}
// 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow
bool Object::create_data_property_or_throw(PropertyName const& property_name, Value value)
{
VERIFY(!value.is_empty());
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? CreateDataProperty(O, P, V).
auto success = create_data_property(property_name, value);
if (vm.exception())
return {};
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.6 CreateNonEnumerableDataPropertyOrThrow ( O, P, V ), https://tc39.es/proposal-error-cause/#sec-createnonenumerabledatapropertyorthrow
bool Object::create_non_enumerable_data_property_or_throw(PropertyName const& property_name, Value value)
{
VERIFY(!value.is_empty());
VERIFY(property_name.is_valid());
// 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
auto new_description = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true };
// 2. Return ? DefinePropertyOrThrow(O, P, newDesc).
return define_property_or_throw(property_name, new_description);
}
// 7.3.8 DefinePropertyOrThrow ( O, P, desc ), https://tc39.es/ecma262/#sec-definepropertyorthrow
bool Object::define_property_or_throw(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? O.[[DefineOwnProperty]](P, desc).
auto success = TRY_OR_DISCARD(internal_define_own_property(property_name, property_descriptor));
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.9 DeletePropertyOrThrow ( O, P ), https://tc39.es/ecma262/#sec-deletepropertyorthrow
bool Object::delete_property_or_throw(PropertyName const& property_name)
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? O.[[Delete]](P).
auto success = TRY_OR_DISCARD(internal_delete(property_name));
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDeleteReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.11 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty
bool Object::has_property(PropertyName const& property_name) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Return ? O.[[HasProperty]](P).
return TRY_OR_DISCARD(internal_has_property(property_name));
}
// 7.3.12 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty
bool Object::has_own_property(PropertyName const& property_name) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY_OR_DISCARD(internal_get_own_property(property_name));
// 4. If desc is undefined, return false.
if (!descriptor.has_value())
return false;
// 5. Return true.
return true;
}
// 7.3.15 SetIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-setintegritylevel
bool Object::set_integrity_level(IntegrityLevel level)
{
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let status be ? O.[[PreventExtensions]]().
auto status = TRY_OR_DISCARD(internal_prevent_extensions());
// 4. If status is false, return false.
if (!status)
return false;
// 5. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = TRY_OR_DISCARD(internal_own_property_keys());
// 6. If level is sealed, then
if (level == IntegrityLevel::Sealed) {
// a. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object, key);
// i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).
define_property_or_throw(property_name, { .configurable = false });
if (vm.exception())
return {};
}
}
// 7. Else,
else {
// a. Assert: level is frozen.
// b. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object, key);
// i. Let currentDesc be ? O.[[GetOwnProperty]](k).
auto current_descriptor = TRY_OR_DISCARD(internal_get_own_property(property_name));
// ii. If currentDesc is not undefined, then
if (!current_descriptor.has_value())
continue;
PropertyDescriptor descriptor;
// 1. If IsAccessorDescriptor(currentDesc) is true, then
if (current_descriptor->is_accessor_descriptor()) {
// a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.
descriptor = { .configurable = false };
}
// 2. Else,
else {
// a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
descriptor = { .writable = false, .configurable = false };
}
// 3. Perform ? DefinePropertyOrThrow(O, k, desc).
define_property_or_throw(property_name, descriptor);
if (vm.exception())
return {};
}
}
// 8. Return true.
return true;
}
// 7.3.16 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel
bool Object::test_integrity_level(IntegrityLevel level) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let extensible be ? IsExtensible(O).
auto extensible = TRY_OR_DISCARD(is_extensible());
// 4. If extensible is true, return false.
// 5. NOTE: If the object is extensible, none of its properties are examined.
if (extensible)
return false;
// 6. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = TRY_OR_DISCARD(internal_own_property_keys());
// 7. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object(), key);
// a. Let currentDesc be ? O.[[GetOwnProperty]](k).
auto current_descriptor = TRY_OR_DISCARD(internal_get_own_property(property_name));
// b. If currentDesc is not undefined, then
if (!current_descriptor.has_value())
continue;
// i. If currentDesc.[[Configurable]] is true, return false.
if (*current_descriptor->configurable)
return false;
// ii. If level is frozen and IsDataDescriptor(currentDesc) is true, then
if (level == IntegrityLevel::Frozen && current_descriptor->is_data_descriptor()) {
// 1. If currentDesc.[[Writable]] is true, return false.
if (*current_descriptor->writable)
return false;
}
}
// 8. Return true.
return true;
}
// 7.3.23 EnumerableOwnPropertyNames ( O, kind ), https://tc39.es/ecma262/#sec-enumerableownpropertynames
MarkedValueList Object::enumerable_own_property_names(PropertyKind kind) const
{
// NOTE: This has been flattened for readability, so some `else` branches in the
// spec text have been replaced with `continue`s in the loop below.
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
auto own_keys_or_error = internal_own_property_keys();
if (own_keys_or_error.is_error())
return MarkedValueList { heap() };
auto own_keys = own_keys_or_error.release_value();
// 3. Let properties be a new empty List.
auto properties = MarkedValueList { heap() };
// 4. For each element key of ownKeys, do
for (auto& key : own_keys) {
// a. If Type(key) is String, then
if (!key.is_string())
continue;
auto property_name = PropertyName::from_value(global_object, key);
// i. Let desc be ? O.[[GetOwnProperty]](key).
auto descriptor_or_error = internal_get_own_property(property_name);
if (descriptor_or_error.is_error())
return MarkedValueList { heap() };
auto descriptor = descriptor_or_error.release_value();
// ii. If desc is not undefined and desc.[[Enumerable]] is true, then
if (descriptor.has_value() && *descriptor->enumerable) {
// 1. If kind is key, append key to properties.
if (kind == PropertyKind::Key) {
properties.append(key);
continue;
}
// 2. Else,
// a. Let value be ? Get(O, key).
auto value = get(property_name);
if (vm.exception())
return MarkedValueList { heap() };
// b. If kind is value, append value to properties.
if (kind == PropertyKind::Value) {
properties.append(value);
continue;
}
// c. Else,
// i. Assert: kind is key+value.
VERIFY(kind == PropertyKind::KeyAndValue);
// ii. Let entry be ! CreateArrayFromList(« key, value »).
auto entry = Array::create_from(global_object, { key, value });
// iii. Append entry to properties.
properties.append(entry);
}
}
// 5. Return properties.
return properties;
}
// 7.3.25 CopyDataProperties ( target, source, excludedItems ), https://tc39.es/ecma262/#sec-copydataproperties
ThrowCompletionOr<Object*> Object::copy_data_properties(Value source, HashTable<PropertyName, PropertyNameTraits> const& seen_names, GlobalObject& global_object)
{
if (source.is_nullish())
return this;
auto* from_object = source.to_object(global_object);
VERIFY(from_object);
for (auto& next_key_value : TRY(from_object->internal_own_property_keys())) {
auto next_key = PropertyName::from_value(global_object, next_key_value);
if (seen_names.contains(next_key))
continue;
auto desc = TRY(from_object->internal_get_own_property(next_key));
if (desc.has_value() && desc->attributes().is_enumerable()) {
auto prop_value = from_object->get(next_key);
if (auto* thrown_exception = vm().exception())
return JS::throw_completion(thrown_exception->value());
create_data_property_or_throw(next_key, prop_value);
if (auto* thrown_exception = vm().exception())
return JS::throw_completion(thrown_exception->value());
}
}
return this;
}
// 10.1 Ordinary Object Internal Methods and Internal Slots, https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots
// 10.1.1 [[GetPrototypeOf]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getprototypeof
ThrowCompletionOr<Object*> Object::internal_get_prototype_of() const
{
// 1. Return O.[[Prototype]].
return const_cast<Object*>(prototype());
}
// 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v
ThrowCompletionOr<bool> Object::internal_set_prototype_of(Object* new_prototype)
{
// 1. Assert: Either Type(V) is Object or Type(V) is Null.
// 2. Let current be O.[[Prototype]].
// 3. If SameValue(V, current) is true, return true.
if (prototype() == new_prototype)
return true;
// 4. Let extensible be O.[[Extensible]].
// 5. If extensible is false, return false.
if (!m_is_extensible)
return false;
// 6. Let p be V.
auto* prototype = new_prototype;
// 7. Let done be false.
// 8. Repeat, while done is false,
while (prototype) {
// a. If p is null, set done to true.
// b. Else if SameValue(p, O) is true, return false.
if (prototype == this)
return false;
// c. Else,
// i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 10.1.1, set done to true.
// NOTE: This is a best-effort implementation; we don't have a good way of detecting whether certain virtual
// Object methods have been overridden by a given object, but as ProxyObject is the only one doing that for
// [[SetPrototypeOf]], this check does the trick.
if (is<ProxyObject>(prototype))
break;
// ii. Else, set p to p.[[Prototype]].
prototype = prototype->prototype();
}
// 9. Set O.[[Prototype]] to V.
set_prototype(new_prototype);
// 10. Return true.
return true;
}
// 10.1.3 [[IsExtensible]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-isextensible
ThrowCompletionOr<bool> Object::internal_is_extensible() const
{
// 1. Return O.[[Extensible]].
return m_is_extensible;
}
// 10.1.4 [[PreventExtensions]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-preventextensions
ThrowCompletionOr<bool> Object::internal_prevent_extensions()
{
// 1. Set O.[[Extensible]] to false.
m_is_extensible = false;
// 2. Return true.
return true;
}
// 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p
ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_property(PropertyName const& property_name) const
{
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. If O does not have an own property with key P, return undefined.
if (!storage_has(property_name))
return Optional<PropertyDescriptor> {};
// 3. Let D be a newly created Property Descriptor with no fields.
PropertyDescriptor descriptor;
// 4. Let X be O's own property whose key is P.
auto [value, attributes] = *storage_get(property_name);
// 5. If X is a data property, then
if (!value.is_accessor()) {
// a. Set D.[[Value]] to the value of X's [[Value]] attribute.
descriptor.value = value.value_or(js_undefined());
// b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
descriptor.writable = attributes.is_writable();
}
// 6. Else,
else {
// a. Assert: X is an accessor property.
// b. Set D.[[Get]] to the value of X's [[Get]] attribute.
descriptor.get = value.as_accessor().getter();
// c. Set D.[[Set]] to the value of X's [[Set]] attribute.
descriptor.set = value.as_accessor().setter();
}
// 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
descriptor.enumerable = attributes.is_enumerable();
// 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
descriptor.configurable = attributes.is_configurable();
// 9. Return D.
return { descriptor };
}
// 10.1.6 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-defineownproperty-p-desc
ThrowCompletionOr<bool> Object::internal_define_own_property(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
{
VERIFY(property_name.is_valid());
// 1. Let current be ? O.[[GetOwnProperty]](P).
auto current = TRY(internal_get_own_property(property_name));
// 2. Let extensible be ? IsExtensible(O).
auto extensible = TRY(is_extensible());
// 3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).
return validate_and_apply_property_descriptor(this, property_name, extensible, property_descriptor, current);
}
// 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p
ThrowCompletionOr<bool> Object::internal_has_property(PropertyName const& property_name) const
{
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let hasOwn be ? O.[[GetOwnProperty]](P).
auto has_own = TRY(internal_get_own_property(property_name));
// 3. If hasOwn is not undefined, return true.
if (has_own.has_value())
return true;
// 4. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY(internal_get_prototype_of());
// 5. If parent is not null, then
if (parent) {
// a. Return ? parent.[[HasProperty]](P).
auto result = parent->internal_has_property(property_name);
if (auto* exception = vm.exception())
return throw_completion(exception->value());
return result;
}
// 6. Return false.
return false;
}
// 10.1.8 [[Get]] ( P, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-get-p-receiver
ThrowCompletionOr<Value> Object::internal_get(PropertyName const& property_name, Value receiver) const
{
VERIFY(!receiver.is_empty());
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY(internal_get_own_property(property_name));
// 3. If desc is undefined, then
if (!descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY(internal_get_prototype_of());
// b. If parent is null, return undefined.
if (!parent)
return js_undefined();
// c. Return ? parent.[[Get]](P, Receiver).
return parent->internal_get(property_name, receiver);
}
// 4. If IsDataDescriptor(desc) is true, return desc.[[Value]].
if (descriptor->is_data_descriptor())
return *descriptor->value;
// 5. Assert: IsAccessorDescriptor(desc) is true.
VERIFY(descriptor->is_accessor_descriptor());
// 6. Let getter be desc.[[Get]].
auto* getter = *descriptor->get;
// 7. If getter is undefined, return undefined.
if (!getter)
return js_undefined();
// 8. Return ? Call(getter, Receiver).
return TRY(vm.call(*getter, receiver));
}
// 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver
ThrowCompletionOr<bool> Object::internal_set(PropertyName const& property_name, Value value, Value receiver)
{
VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty());
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let ownDesc be ? O.[[GetOwnProperty]](P).
auto own_descriptor = TRY(internal_get_own_property(property_name));
// 3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).
auto success = ordinary_set_with_own_descriptor(property_name, value, receiver, own_descriptor);
if (auto* exception = vm.exception())
return throw_completion(exception->value());
return success;
}
// 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor
bool Object::ordinary_set_with_own_descriptor(PropertyName const& property_name, Value value, Value receiver, Optional<PropertyDescriptor> own_descriptor)
{
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. If ownDesc is undefined, then
if (!own_descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY_OR_DISCARD(internal_get_prototype_of());
// b. If parent is not null, then
if (parent) {
// i. Return ? parent.[[Set]](P, V, Receiver).
return TRY_OR_DISCARD(parent->internal_set(property_name, value, receiver));
}
// c. Else,
else {
// i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
own_descriptor = PropertyDescriptor {
.value = js_undefined(),
.writable = true,
.enumerable = true,
.configurable = true,
};
}
}
// 3. If IsDataDescriptor(ownDesc) is true, then
if (own_descriptor->is_data_descriptor()) {
// a. If ownDesc.[[Writable]] is false, return false.
if (!*own_descriptor->writable)
return false;
// b. If Type(Receiver) is not Object, return false.
if (!receiver.is_object())
return false;
// c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
auto existing_descriptor = TRY_OR_DISCARD(receiver.as_object().internal_get_own_property(property_name));
// d. If existingDescriptor is not undefined, then
if (existing_descriptor.has_value()) {
// i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
if (existing_descriptor->is_accessor_descriptor())
return false;
// ii. If existingDescriptor.[[Writable]] is false, return false.
if (!*existing_descriptor->writable)
return false;
// iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }.
auto value_descriptor = PropertyDescriptor { .value = value };
// iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).
return TRY_OR_DISCARD(receiver.as_object().internal_define_own_property(property_name, value_descriptor));
}
// e. Else,
else {
// i. Assert: Receiver does not currently have a property P.
VERIFY(!receiver.as_object().storage_has(property_name));
// ii. Return ? CreateDataProperty(Receiver, P, V).
return receiver.as_object().create_data_property(property_name, value);
}
}
// 4. Assert: IsAccessorDescriptor(ownDesc) is true.
VERIFY(own_descriptor->is_accessor_descriptor());
// 5. Let setter be ownDesc.[[Set]].
auto* setter = *own_descriptor->set;
// 6. If setter is undefined, return false.
if (!setter)
return false;
// 7. Perform ? Call(setter, Receiver, « V »).
(void)vm.call(*setter, receiver, value);
if (vm.exception())
return {};
// 8. Return true.
return true;
}
// 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p
ThrowCompletionOr<bool> Object::internal_delete(PropertyName const& property_name)
{
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY(internal_get_own_property(property_name));
// 3. If desc is undefined, return true.
if (!descriptor.has_value())
return true;
// 4. If desc.[[Configurable]] is true, then
if (*descriptor->configurable) {
// a. Remove the own property with name P from O.
storage_delete(property_name);
// b. Return true.
return true;
}
// 5. Return false.
return false;
}
// 10.1.11 [[OwnPropertyKeys]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
ThrowCompletionOr<MarkedValueList> Object::internal_own_property_keys() const
{
auto& vm = this->vm();
// 1. Let keys be a new empty List.
MarkedValueList keys { heap() };
// 2. For each own property key P of O such that P is an array index, in ascending numeric index order, do
for (auto& entry : m_indexed_properties) {
// a. Add P as the last element of keys.
keys.append(js_string(vm, String::number(entry.index())));
}
// 3. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) {
if (it.key.is_string()) {
// a. Add P as the last element of keys.
keys.append(it.key.to_value(vm));
}
}
// 4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) {
if (it.key.is_symbol()) {
// a. Add P as the last element of keys.
keys.append(it.key.to_value(vm));
}
}
// 5. Return keys.
return { move(keys) };
}
// 10.4.7.2 SetImmutablePrototype ( O, V ), https://tc39.es/ecma262/#sec-set-immutable-prototype
bool Object::set_immutable_prototype(Object* prototype)
{
// 1. Assert: Either Type(V) is Object or Type(V) is Null.
// 2. Let current be ? O.[[GetPrototypeOf]]().
auto* current = TRY_OR_DISCARD(internal_get_prototype_of());
// 3. If SameValue(V, current) is true, return true.
if (prototype == current)
return true;
// 4. Return false.
return false;
}
Optional<ValueAndAttributes> Object::storage_get(PropertyName const& property_name) const
{
VERIFY(property_name.is_valid());
Value value;
PropertyAttributes attributes;
if (property_name.is_number()) {
auto value_and_attributes = m_indexed_properties.get(property_name.as_number());
if (!value_and_attributes.has_value())
return {};
value = value_and_attributes->value;
attributes = value_and_attributes->attributes;
} else {
auto metadata = shape().lookup(property_name.to_string_or_symbol());
if (!metadata.has_value())
return {};
value = m_storage[metadata->offset];
attributes = metadata->attributes;
}
return ValueAndAttributes { .value = value, .attributes = attributes };
}
bool Object::storage_has(PropertyName const& property_name) const
{
VERIFY(property_name.is_valid());
if (property_name.is_number())
return m_indexed_properties.has_index(property_name.as_number());
return shape().lookup(property_name.to_string_or_symbol()).has_value();
}
void Object::storage_set(PropertyName const& property_name, ValueAndAttributes const& value_and_attributes)
{
VERIFY(property_name.is_valid());
auto [value, attributes] = value_and_attributes;
if (property_name.is_number()) {
auto index = property_name.as_number();
m_indexed_properties.put(index, value, attributes);
return;
}
auto property_name_string_or_symbol = property_name.to_string_or_symbol();
auto metadata = shape().lookup(property_name_string_or_symbol);
if (!metadata.has_value()) {
if (!m_shape->is_unique() && shape().property_count() > 100) {
// If you add more than 100 properties to an object, let's stop doing
// transitions to avoid filling up the heap with shapes.
ensure_shape_is_unique();
}
if (m_shape->is_unique())
m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes);
else
set_shape(*m_shape->create_put_transition(property_name_string_or_symbol, attributes));
m_storage.append(value);
return;
}
if (attributes != metadata->attributes) {
if (m_shape->is_unique())
m_shape->reconfigure_property_in_unique_shape(property_name_string_or_symbol, attributes);
else
set_shape(*m_shape->create_configure_transition(property_name_string_or_symbol, attributes));
}
m_storage[metadata->offset] = value;
}
void Object::storage_delete(PropertyName const& property_name)
{
VERIFY(property_name.is_valid());
VERIFY(storage_has(property_name));
if (property_name.is_number())
return m_indexed_properties.remove(property_name.as_number());
auto metadata = shape().lookup(property_name.to_string_or_symbol());
VERIFY(metadata.has_value());
ensure_shape_is_unique();
shape().remove_property_from_unique_shape(property_name.to_string_or_symbol(), metadata->offset);
m_storage.remove(metadata->offset);
}
void Object::set_prototype(Object* new_prototype)
{
if (prototype() == new_prototype)
return;
auto& shape = this->shape();
if (shape.is_unique())
shape.set_prototype_without_transition(new_prototype);
else
m_shape = shape.create_prototype_transition(new_prototype);
}
void Object::define_native_accessor(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> getter, Function<Value(VM&, GlobalObject&)> setter, PropertyAttributes attribute)
{
auto& vm = this->vm();
String formatted_property_name;
if (property_name.is_number()) {
formatted_property_name = property_name.to_string();
} else if (property_name.is_string()) {
formatted_property_name = property_name.as_string();
} else {
formatted_property_name = String::formatted("[{}]", property_name.as_symbol()->description());
}
FunctionObject* getter_function = nullptr;
if (getter) {
auto name = String::formatted("get {}", formatted_property_name);
getter_function = NativeFunction::create(global_object(), name, move(getter));
getter_function->define_direct_property(vm.names.length, Value(0), Attribute::Configurable);
getter_function->define_direct_property(vm.names.name, js_string(vm, name), Attribute::Configurable);
}
FunctionObject* setter_function = nullptr;
if (setter) {
auto name = String::formatted("set {}", formatted_property_name);
setter_function = NativeFunction::create(global_object(), name, move(setter));
setter_function->define_direct_property(vm.names.length, Value(1), Attribute::Configurable);
setter_function->define_direct_property(vm.names.name, js_string(vm, name), Attribute::Configurable);
}
return define_direct_accessor(property_name, getter_function, setter_function, attribute);
}
void Object::define_direct_accessor(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes)
{
VERIFY(property_name.is_valid());
auto existing_property = storage_get(property_name).value_or({}).value;
auto* accessor = existing_property.is_accessor() ? &existing_property.as_accessor() : nullptr;
if (!accessor) {
accessor = Accessor::create(vm(), getter, setter);
define_direct_property(property_name, accessor, attributes);
} else {
if (getter)
accessor->set_getter(getter);
if (setter)
accessor->set_setter(setter);
}
}
void Object::ensure_shape_is_unique()
{
if (shape().is_unique())
return;
m_shape = m_shape->create_unique_clone();
}
// Simple side-effect free property lookup, following the prototype chain. Non-standard.
Value Object::get_without_side_effects(const PropertyName& property_name) const
{
auto* object = this;
while (object) {
auto value_and_attributes = object->storage_get(property_name);
if (value_and_attributes.has_value())
return value_and_attributes->value;
object = object->prototype();
}
return {};
}
void Object::define_native_function(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> native_function, i32 length, PropertyAttributes attribute)
{
auto& vm = this->vm();
String function_name;
if (property_name.is_string()) {
function_name = property_name.as_string();
} else {
function_name = String::formatted("[{}]", property_name.as_symbol()->description());
}
auto* function = NativeFunction::create(global_object(), function_name, move(native_function));
function->define_direct_property(vm.names.length, Value(length), Attribute::Configurable);
function->define_direct_property(vm.names.name, js_string(vm, function_name), Attribute::Configurable);
define_direct_property(property_name, function, attribute);
}
// 20.1.2.3.1 ObjectDefineProperties ( O, Properties ), https://tc39.es/ecma262/#sec-objectdefineproperties
Object* Object::define_properties(Value properties)
{
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Let props be ? ToObject(Properties).
auto* props = properties.to_object(global_object);
if (vm.exception())
return {};
// 3. Let keys be ? props.[[OwnPropertyKeys]]().
auto keys = TRY_OR_DISCARD(props->internal_own_property_keys());
struct NameAndDescriptor {
PropertyName name;
PropertyDescriptor descriptor;
};
// 4. Let descriptors be a new empty List.
Vector<NameAndDescriptor> descriptors;
// 5. For each element nextKey of keys, do
for (auto& next_key : keys) {
auto property_name = PropertyName::from_value(global_object, next_key);
// a. Let propDesc be ? props.[[GetOwnProperty]](nextKey).
auto property_descriptor = TRY_OR_DISCARD(props->internal_get_own_property(property_name));
// b. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then
if (property_descriptor.has_value() && *property_descriptor->enumerable) {
// i. Let descObj be ? Get(props, nextKey).
auto descriptor_object = props->get(property_name);
if (vm.exception())
return {};
// ii. Let desc be ? ToPropertyDescriptor(descObj).
auto descriptor = to_property_descriptor(global_object, descriptor_object);
if (vm.exception())
return {};
// iii. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors.
descriptors.append({ property_name, descriptor });
}
}
// 6. For each element pair of descriptors, do
for (auto& [name, descriptor] : descriptors) {
// a. Let P be the first element of pair.
// b. Let desc be the second element of pair.
// c. Perform ? DefinePropertyOrThrow(O, P, desc).
define_property_or_throw(name, descriptor);
if (vm.exception())
return {};
}
// 7. Return O.
return this;
}
void Object::visit_edges(Cell::Visitor& visitor)
{
Cell::visit_edges(visitor);
visitor.visit(m_shape);
for (auto& value : m_storage)
visitor.visit(value);
m_indexed_properties.for_each_value([&visitor](auto& value) {
visitor.visit(value);
});
}
// 7.1.1.1 OrdinaryToPrimitive ( O, hint ), https://tc39.es/ecma262/#sec-ordinarytoprimitive
ThrowCompletionOr<Value> Object::ordinary_to_primitive(Value::PreferredType preferred_type) const
{
VERIFY(preferred_type == Value::PreferredType::String || preferred_type == Value::PreferredType::Number);
auto& vm = this->vm();
AK::Array<PropertyName, 2> method_names;
// 1. If hint is string, then
if (preferred_type == Value::PreferredType::String) {
// a. Let methodNames be « "toString", "valueOf" ».
method_names = { vm.names.toString, vm.names.valueOf };
} else {
// a. Let methodNames be « "valueOf", "toString" ».
method_names = { vm.names.valueOf, vm.names.toString };
}
// 3. For each element name of methodNames, do
for (auto& method_name : method_names) {
// a. Let method be ? Get(O, name).
auto method = get(method_name);
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// b. If IsCallable(method) is true, then
if (method.is_function()) {
// i. Let result be ? Call(method, O).
auto result = TRY(vm.call(method.as_function(), const_cast<Object*>(this)));
// ii. If Type(result) is not Object, return result.
if (!result.is_object())
return result;
}
}
// 4. Throw a TypeError exception.
return vm.throw_completion<TypeError>(global_object(), ErrorType::Convert, "object", preferred_type == Value::PreferredType::String ? "string" : "number");
}
}