ladybird/Userland/Libraries/LibELF/DynamicLoader.cpp
Sönke Holz 9437b29b43 LibELF+LibC: Add support for Variant I of the TLS data structures
We currently only supported Variant II which is used by x86-64.
Variant I is used by both AArch64 (when using the traditional
non-TLSDESC model) and RISC-V, although with small differences.

The TLS layout for Variant I is essentially flipped. The static TLS
blocks are after the thread pointer for Variant I, while on Variant II
they are before it.

Some code using ELF TLS already worked on AArch64 and RISC-V even though
we only support Variant II. This is because only the local-exec model
directly uses TLS offsets, other models use relocations or
__tls_get_addr().
2024-04-19 16:46:47 -06:00

862 lines
34 KiB
C++

/*
* Copyright (c) 2019-2020, Andrew Kaster <akaster@serenityos.org>
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022-2023, Daniel Bertalan <dani@danielbertalan.dev>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Optional.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibELF/Arch/GenericDynamicRelocationType.h>
#include <LibELF/Arch/tls.h>
#include <LibELF/DynamicLinker.h>
#include <LibELF/DynamicLoader.h>
#include <LibELF/Hashes.h>
#include <LibELF/Validation.h>
#include <assert.h>
#include <bits/dlfcn_integration.h>
#include <dlfcn.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#ifndef AK_OS_SERENITY
static void* mmap_with_name(void* addr, size_t length, int prot, int flags, int fd, off_t offset, char const*)
{
return mmap(addr, length, prot, flags, fd, offset);
}
# define MAP_RANDOMIZED 0
#endif
#if ARCH(AARCH64)
# define HAS_TLSDESC_SUPPORT
extern "C" {
void* __tlsdesc_static(void*);
}
#endif
namespace ELF {
Result<NonnullRefPtr<DynamicLoader>, DlErrorMessage> DynamicLoader::try_create(int fd, ByteString filepath)
{
VERIFY(filepath.starts_with('/'));
struct stat stat;
if (fstat(fd, &stat) < 0) {
return DlErrorMessage { "DynamicLoader::try_create fstat" };
}
VERIFY(stat.st_size >= 0);
auto size = static_cast<size_t>(stat.st_size);
if (size < sizeof(Elf_Ehdr))
return DlErrorMessage { ByteString::formatted("File {} has invalid ELF header", filepath) };
ByteString file_mmap_name = ByteString::formatted("ELF_DYN: {}", filepath);
auto* data = mmap_with_name(nullptr, size, PROT_READ, MAP_SHARED, fd, 0, file_mmap_name.characters());
if (data == MAP_FAILED) {
return DlErrorMessage { "DynamicLoader::try_create mmap" };
}
auto loader = adopt_ref(*new DynamicLoader(fd, move(filepath), data, size));
if (!loader->is_valid())
return DlErrorMessage { "ELF image validation failed" };
return loader;
}
DynamicLoader::DynamicLoader(int fd, ByteString filepath, void* data, size_t size)
: m_filepath(move(filepath))
, m_file_size(size)
, m_image_fd(fd)
, m_file_data(data)
{
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
m_valid = validate();
if (m_valid)
find_tls_size_and_alignment();
else
dbgln("Image validation failed for file {}", m_filepath);
}
DynamicLoader::~DynamicLoader()
{
if (munmap(m_file_data, m_file_size) < 0) {
perror("munmap");
VERIFY_NOT_REACHED();
}
if (close(m_image_fd) < 0) {
perror("close");
VERIFY_NOT_REACHED();
}
}
DynamicObject const& DynamicLoader::dynamic_object() const
{
if (!m_cached_dynamic_object) {
VirtualAddress dynamic_section_address;
image().for_each_program_header([&dynamic_section_address](auto program_header) {
if (program_header.type() == PT_DYNAMIC) {
dynamic_section_address = VirtualAddress(program_header.raw_data());
}
});
VERIFY(!dynamic_section_address.is_null());
m_cached_dynamic_object = ELF::DynamicObject::create(m_filepath, VirtualAddress(image().base_address()), dynamic_section_address);
}
return *m_cached_dynamic_object;
}
void DynamicLoader::find_tls_size_and_alignment()
{
image().for_each_program_header([this](auto program_header) {
if (program_header.type() == PT_TLS) {
m_tls_size_of_current_object = program_header.size_in_memory();
auto alignment = program_header.alignment();
VERIFY(!alignment || is_power_of_two(alignment));
m_tls_alignment_of_current_object = alignment > 1 ? alignment : 0; // No need to reserve extra space for single byte alignment
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
bool DynamicLoader::validate()
{
if (!image().is_valid())
return false;
auto* elf_header = (Elf_Ehdr*)m_file_data;
if (!validate_elf_header(*elf_header, m_file_size))
return false;
auto result_or_error = validate_program_headers(*elf_header, m_file_size, { m_file_data, m_file_size });
if (result_or_error.is_error() || !result_or_error.value())
return false;
return true;
}
RefPtr<DynamicObject> DynamicLoader::map()
{
if (m_dynamic_object) {
// Already mapped.
return nullptr;
}
if (!m_valid) {
dbgln("DynamicLoader::map failed: image is invalid");
return nullptr;
}
load_program_headers();
VERIFY(!m_base_address.is_null());
m_dynamic_object = DynamicObject::create(m_filepath, m_base_address, m_dynamic_section_address);
m_dynamic_object->set_tls_offset(m_tls_offset);
m_dynamic_object->set_tls_size(m_tls_size_of_current_object);
return m_dynamic_object;
}
bool DynamicLoader::link(unsigned flags)
{
return load_stage_2(flags);
}
bool DynamicLoader::load_stage_2(unsigned flags)
{
VERIFY(flags & RTLD_GLOBAL);
if (m_dynamic_object->has_text_relocations()) {
dbgln("\033[33mWarning:\033[0m Dynamic object {} has text relocations", m_dynamic_object->filepath());
for (auto& text_segment : m_text_segments) {
VERIFY(text_segment.address().get() != 0);
#ifndef AK_OS_MACOS
// Remap this text region as private.
if (mremap(text_segment.address().as_ptr(), text_segment.size(), text_segment.size(), MAP_PRIVATE) == MAP_FAILED) {
perror("mremap .text: MAP_PRIVATE");
return false;
}
#endif
if (0 > mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_WRITE)) {
perror("mprotect .text: PROT_READ | PROT_WRITE"); // FIXME: dlerror?
return false;
}
}
} else {
// .text needs to be executable while we process relocations because it might contain IFUNC resolvers.
// We don't allow IFUNC resolvers in objects with textrels.
for (auto& text_segment : m_text_segments) {
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
perror("mprotect .text: PROT_READ | PROT_EXEC");
return false;
}
}
}
do_main_relocations();
return true;
}
void DynamicLoader::do_main_relocations()
{
do_relr_relocations();
Optional<DynamicLoader::CachedLookupResult> cached_result;
m_dynamic_object->relocation_section().for_each_relocation([&](DynamicObject::Relocation const& relocation) {
switch (do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::No)) {
case RelocationResult::Failed:
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
VERIFY_NOT_REACHED();
case RelocationResult::ResolveLater:
m_unresolved_relocations.append(relocation);
break;
case RelocationResult::CallIfuncResolver:
m_direct_ifunc_relocations.append(relocation);
break;
case RelocationResult::Success:
break;
}
});
// If the object is position-independent, the pointer to the PLT trampoline needs to be relocated.
auto fixup_trampoline_pointer = [&](DynamicObject::Relocation const& relocation) {
VERIFY(static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::JUMP_SLOT);
if (image().is_dynamic())
*((FlatPtr*)relocation.address().as_ptr()) += m_dynamic_object->base_address().get();
};
m_dynamic_object->plt_relocation_section().for_each_relocation([&](DynamicObject::Relocation const& relocation) {
if (static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::IRELATIVE) {
m_direct_ifunc_relocations.append(relocation);
return;
}
if (static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::TLSDESC) {
// GNU ld for some reason puts TLSDESC relocations into .rela.plt
// https://sourceware.org/bugzilla/show_bug.cgi?id=28387
VERIFY(do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::No) == RelocationResult::Success);
return;
}
// FIXME: Or LD_BIND_NOW is set?
if (m_dynamic_object->must_bind_now()) {
switch (do_plt_relocation(relocation, ShouldCallIfuncResolver::No)) {
case RelocationResult::Failed:
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
VERIFY_NOT_REACHED();
case RelocationResult::ResolveLater:
VERIFY_NOT_REACHED();
case RelocationResult::CallIfuncResolver:
m_plt_ifunc_relocations.append(relocation);
// Set up lazy binding, in case an IFUNC resolver calls another IFUNC that hasn't been resolved yet.
fixup_trampoline_pointer(relocation);
break;
case RelocationResult::Success:
break;
}
} else {
fixup_trampoline_pointer(relocation);
}
});
}
Result<NonnullRefPtr<DynamicObject>, DlErrorMessage> DynamicLoader::load_stage_3(unsigned flags)
{
do_lazy_relocations();
if (flags & RTLD_LAZY) {
if (m_dynamic_object->has_plt())
setup_plt_trampoline();
}
// IFUNC resolvers can only be called after the PLT has been populated,
// as they may call arbitrary functions via the PLT.
for (auto const& relocation : m_plt_ifunc_relocations) {
auto result = do_plt_relocation(relocation, ShouldCallIfuncResolver::Yes);
VERIFY(result == RelocationResult::Success);
}
Optional<DynamicLoader::CachedLookupResult> cached_result;
for (auto const& relocation : m_direct_ifunc_relocations) {
auto result = do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::No, ShouldCallIfuncResolver::Yes);
VERIFY(result == RelocationResult::Success);
}
if (m_dynamic_object->has_text_relocations()) {
// If we don't have textrels, .text has already been made executable by this point in load_stage_2.
for (auto& text_segment : m_text_segments) {
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
return DlErrorMessage { ByteString::formatted("mprotect .text: PROT_READ | PROT_EXEC: {}", strerror(errno)) };
}
}
}
if (m_relro_segment_size) {
if (mprotect(m_relro_segment_address.as_ptr(), m_relro_segment_size, PROT_READ) < 0) {
return DlErrorMessage { ByteString::formatted("mprotect .relro: PROT_READ: {}", strerror(errno)) };
}
#ifdef AK_OS_SERENITY
if (set_mmap_name(m_relro_segment_address.as_ptr(), m_relro_segment_size, ByteString::formatted("{}: .relro", m_filepath).characters()) < 0) {
return DlErrorMessage { ByteString::formatted("set_mmap_name .relro: {}", strerror(errno)) };
}
#endif
}
m_fully_relocated = true;
return NonnullRefPtr<DynamicObject> { *m_dynamic_object };
}
void DynamicLoader::load_stage_4()
{
call_object_init_functions();
m_fully_initialized = true;
}
void DynamicLoader::do_lazy_relocations()
{
Optional<DynamicLoader::CachedLookupResult> cached_result;
for (auto const& relocation : m_unresolved_relocations) {
if (auto res = do_direct_relocation(relocation, cached_result, ShouldInitializeWeak::Yes, ShouldCallIfuncResolver::Yes); res != RelocationResult::Success) {
dbgln("Loader.so: {} unresolved symbol '{}'", m_filepath, relocation.symbol().name());
VERIFY_NOT_REACHED();
}
}
}
void DynamicLoader::load_program_headers()
{
FlatPtr ph_load_start = SIZE_MAX;
FlatPtr ph_load_end = 0;
// We walk the program header list once to find the requested address ranges of the program.
// We don't fill in the list of regions yet to keep malloc memory blocks from interfering with our reservation.
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
if (program_header.type() != PT_LOAD)
return;
FlatPtr section_start = program_header.vaddr().get();
FlatPtr section_end = section_start + program_header.size_in_memory();
if (ph_load_start > section_start)
ph_load_start = section_start;
if (ph_load_end < section_end)
ph_load_end = section_end;
});
void* requested_load_address = image().is_dynamic() ? nullptr : reinterpret_cast<void*>(ph_load_start);
int reservation_mmap_flags = MAP_ANON | MAP_PRIVATE | MAP_NORESERVE;
if (image().is_dynamic())
reservation_mmap_flags |= MAP_RANDOMIZED;
#ifdef MAP_FIXED_NOREPLACE
else
reservation_mmap_flags |= MAP_FIXED_NOREPLACE;
#endif
// First, we make a dummy reservation mapping, in order to allocate enough VM
// to hold all regions contiguously in the address space.
FlatPtr ph_load_base = ph_load_start & ~(FlatPtr)0xfffu;
ph_load_end = round_up_to_power_of_two(ph_load_end, PAGE_SIZE);
size_t total_mapping_size = ph_load_end - ph_load_base;
// Before we make our reservation, unmap our existing mapped ELF image that we used for reading header information.
// This leaves our pointers dangling momentarily, but it reduces the chance that we will conflict with ourselves.
if (munmap(m_file_data, m_file_size) < 0) {
perror("munmap old mapping");
VERIFY_NOT_REACHED();
}
m_elf_image = nullptr;
m_file_data = nullptr;
auto* reservation = mmap(requested_load_address, total_mapping_size, PROT_NONE, reservation_mmap_flags, 0, 0);
if (reservation == MAP_FAILED) {
perror("mmap reservation");
VERIFY_NOT_REACHED();
}
// Now that we can't accidentally block our requested space, re-map our ELF image.
ByteString file_mmap_name = ByteString::formatted("ELF_DYN: {}", m_filepath);
auto* data = mmap_with_name(nullptr, m_file_size, PROT_READ, MAP_SHARED, m_image_fd, 0, file_mmap_name.characters());
if (data == MAP_FAILED) {
perror("mmap new mapping");
VERIFY_NOT_REACHED();
}
m_file_data = data;
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
VERIFY(requested_load_address == nullptr || reservation == requested_load_address);
m_base_address = VirtualAddress { reservation };
// Most binaries have four loadable regions, three of which are mapped
// (symbol tables/relocation information, executable instructions, read-only data)
// and one of which is copied (modifiable data).
// These are allocated in-line to cut down on the malloc calls.
Vector<ProgramHeaderRegion, 3> map_regions;
Vector<ProgramHeaderRegion, 1> copy_regions;
Optional<ProgramHeaderRegion> relro_region;
VirtualAddress dynamic_region_desired_vaddr;
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
ProgramHeaderRegion region {};
region.set_program_header(program_header.raw_header());
if (region.is_tls_template()) {
// Skip, this is handled in DynamicLoader::copy_initial_tls_data_into.
} else if (region.is_load()) {
if (region.size_in_memory() == 0)
return;
if (region.is_writable()) {
copy_regions.append(region);
} else {
map_regions.append(region);
}
} else if (region.is_dynamic()) {
dynamic_region_desired_vaddr = region.desired_load_address();
} else if (region.is_relro()) {
VERIFY(!relro_region.has_value());
relro_region = region;
}
});
VERIFY(!map_regions.is_empty() || !copy_regions.is_empty());
auto compare_load_address = [](ProgramHeaderRegion& a, ProgramHeaderRegion& b) {
return a.desired_load_address().as_ptr() < b.desired_load_address().as_ptr();
};
quick_sort(map_regions, compare_load_address);
quick_sort(copy_regions, compare_load_address);
// Pre-allocate any malloc memory needed before unmapping the reservation.
// We don't want any future malloc to accidentally mmap a reserved address!
ByteString text_segment_name = ByteString::formatted("{}: .text", m_filepath);
ByteString rodata_segment_name = ByteString::formatted("{}: .rodata", m_filepath);
ByteString data_segment_name = ByteString::formatted("{}: .data", m_filepath);
m_text_segments.ensure_capacity(map_regions.size());
// Finally, we unmap the reservation.
if (munmap(reservation, total_mapping_size) < 0) {
perror("munmap reservation");
VERIFY_NOT_REACHED();
}
// WARNING: Allocating after this point has the possibility of malloc stealing our reserved
// virtual memory addresses. Be careful not to malloc below!
// Process regions in order: .text, .data, .tls
for (auto& region : map_regions) {
FlatPtr ph_desired_base = region.desired_load_address().get();
FlatPtr ph_base = region.desired_load_address().page_base().get();
FlatPtr ph_end = ph_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_base, PAGE_SIZE);
char const* const segment_name = region.is_executable() ? text_segment_name.characters() : rodata_segment_name.characters();
// Now we can map the text segment at the reserved address.
auto* segment_base = (u8*)mmap_with_name(
(u8*)reservation + ph_base - ph_load_base,
ph_desired_base - ph_base + region.size_in_image(),
PROT_READ,
MAP_SHARED | MAP_FIXED,
m_image_fd,
VirtualAddress { region.offset() }.page_base().get(),
segment_name);
if (segment_base == MAP_FAILED) {
perror("mmap non-writable");
VERIFY_NOT_REACHED();
}
// NOTE: Capacity ensured above the line of no malloc above
if (region.is_executable())
m_text_segments.unchecked_append({ VirtualAddress { segment_base }, ph_end - ph_base });
}
VERIFY(requested_load_address == nullptr || requested_load_address == reservation);
if (relro_region.has_value()) {
m_relro_segment_size = relro_region->size_in_memory();
m_relro_segment_address = VirtualAddress { (u8*)reservation + relro_region->desired_load_address().get() - ph_load_base };
}
if (image().is_dynamic())
m_dynamic_section_address = VirtualAddress { (u8*)reservation + dynamic_region_desired_vaddr.get() - ph_load_base };
else
m_dynamic_section_address = dynamic_region_desired_vaddr;
for (auto& region : copy_regions) {
FlatPtr ph_data_base = region.desired_load_address().page_base().get();
FlatPtr ph_data_end = ph_data_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_data_base, PAGE_SIZE);
auto* data_segment_address = (u8*)reservation + ph_data_base - ph_load_base;
size_t data_segment_size = ph_data_end - ph_data_base;
// Finally, we make an anonymous mapping for the data segment. Contents are then copied from the file.
auto* data_segment = (u8*)mmap_with_name(
data_segment_address,
data_segment_size,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED,
0,
0,
data_segment_name.characters());
if (MAP_FAILED == data_segment) {
perror("mmap writable");
VERIFY_NOT_REACHED();
}
VirtualAddress data_segment_start;
if (image().is_dynamic())
data_segment_start = VirtualAddress { (u8*)reservation + region.desired_load_address().get() };
else
data_segment_start = region.desired_load_address();
VERIFY(data_segment_start.as_ptr() + region.size_in_memory() <= data_segment + data_segment_size);
memcpy(data_segment_start.as_ptr(), (u8*)m_file_data + region.offset(), region.size_in_image());
}
}
DynamicLoader::RelocationResult DynamicLoader::do_direct_relocation(DynamicObject::Relocation const& relocation,
Optional<DynamicLoader::CachedLookupResult>& cached_result,
[[maybe_unused]] ShouldInitializeWeak should_initialize_weak,
ShouldCallIfuncResolver should_call_ifunc_resolver)
{
FlatPtr* patch_ptr = nullptr;
if (is_dynamic())
patch_ptr = (FlatPtr*)(m_dynamic_object->base_address().as_ptr() + relocation.offset());
else
patch_ptr = (FlatPtr*)(FlatPtr)relocation.offset();
auto call_ifunc_resolver = [](VirtualAddress address) {
return VirtualAddress { reinterpret_cast<DynamicObject::IfuncResolver>(address.get())() };
};
auto lookup_symbol = [&](DynamicObject::Symbol const& symbol) {
// The static linker sorts relocations by the referenced symbol. Especially when vtables
// in large inheritance hierarchies are involved, there might be tens of references to
// the same symbol. We can avoid redundant lookups by keeping track of the previous result.
if (!cached_result.has_value() || !cached_result.value().symbol.definitely_equals(symbol))
cached_result = DynamicLoader::CachedLookupResult { symbol, DynamicLoader::lookup_symbol(symbol) };
return cached_result.value().result;
};
struct ResolvedTLSSymbol {
DynamicObject const& dynamic_object;
FlatPtr value;
};
auto resolve_tls_symbol = [&](DynamicObject::Relocation const& relocation) -> Optional<ResolvedTLSSymbol> {
if (relocation.symbol_index() == 0)
return ResolvedTLSSymbol { relocation.dynamic_object(), 0 };
auto res = lookup_symbol(relocation.symbol());
if (!res.has_value())
return {};
VERIFY(relocation.symbol().type() != STT_GNU_IFUNC);
VERIFY(res.value().dynamic_object != nullptr);
return ResolvedTLSSymbol { *res.value().dynamic_object, res.value().value };
};
using enum GenericDynamicRelocationType;
switch (static_cast<GenericDynamicRelocationType>(relocation.type())) {
case NONE:
// Apparently most loaders will just skip these?
// Seems if the 'link editor' generates one something is funky with your code
break;
case ABSOLUTE: {
auto symbol = relocation.symbol();
auto res = lookup_symbol(symbol);
if (!res.has_value()) {
if (symbol.bind() == STB_WEAK)
return RelocationResult::ResolveLater;
dbgln("ERROR: symbol not found: {}.", symbol.name());
return RelocationResult::Failed;
}
if (res.value().type == STT_GNU_IFUNC && should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
return RelocationResult::CallIfuncResolver;
auto symbol_address = res.value().address;
if (relocation.addend_used())
*patch_ptr = symbol_address.get() + relocation.addend();
else
*patch_ptr += symbol_address.get();
if (res.value().type == STT_GNU_IFUNC)
*patch_ptr = call_ifunc_resolver(VirtualAddress { *patch_ptr }).get();
break;
}
#if !ARCH(RISCV64)
case GLOB_DAT: {
auto symbol = relocation.symbol();
auto res = lookup_symbol(symbol);
VirtualAddress symbol_location;
if (!res.has_value()) {
if (symbol.bind() == STB_WEAK) {
if (should_initialize_weak == ShouldInitializeWeak::No)
return RelocationResult::ResolveLater;
} else {
// Symbol not found
return RelocationResult::Failed;
}
symbol_location = VirtualAddress { (FlatPtr)0 };
} else {
symbol_location = res.value().address;
if (res.value().type == STT_GNU_IFUNC) {
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
return RelocationResult::CallIfuncResolver;
if (res.value().dynamic_object != nullptr && res.value().dynamic_object->has_text_relocations()) {
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
return RelocationResult::Failed;
}
symbol_location = call_ifunc_resolver(symbol_location);
}
}
VERIFY(symbol_location != m_dynamic_object->base_address());
*patch_ptr = symbol_location.get();
break;
}
#endif
case RELATIVE: {
if (!image().is_dynamic())
break;
// FIXME: According to the spec, R_386_relative ones must be done first.
// We could explicitly do them first using m_number_of_relocations from DT_RELCOUNT
// However, our compiler is nice enough to put them at the front of the relocations for us :)
if (relocation.addend_used())
*patch_ptr = m_dynamic_object->base_address().offset(relocation.addend()).get();
else
*patch_ptr += m_dynamic_object->base_address().get();
break;
}
case TLS_TPREL: {
auto maybe_resolution = resolve_tls_symbol(relocation);
if (!maybe_resolution.has_value())
break;
auto [dynamic_object_of_symbol, symbol_value] = maybe_resolution.value();
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
*patch_ptr = addend + dynamic_object_of_symbol.tls_offset().value() + symbol_value + TLS_TP_STATIC_TLS_BLOCK_OFFSET;
if constexpr (TLS_VARIANT == 1) {
// Until offset TLS_TP_STATIC_TLS_BLOCK_OFFSET there's the thread's ThreadControlBlock, we don't want to collide with it.
VERIFY(static_cast<ssize_t>(*patch_ptr) >= static_cast<ssize_t>(TLS_TP_STATIC_TLS_BLOCK_OFFSET));
} else if constexpr (TLS_VARIANT == 2) {
// At offset 0 there's the thread's ThreadControlBlock, we don't want to collide with it.
VERIFY(static_cast<ssize_t>(*patch_ptr) < 0);
}
break;
}
case TLS_DTPMOD: {
auto maybe_resolution = resolve_tls_symbol(relocation);
if (!maybe_resolution.has_value())
break;
// We repurpose the module index to store the TLS block's TP offset. This is fine
// because we currently only support a single static TLS block.
*patch_ptr = maybe_resolution->dynamic_object.tls_offset().value();
break;
}
case TLS_DTPREL: {
auto maybe_resolution = resolve_tls_symbol(relocation);
if (!maybe_resolution.has_value())
break;
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
*patch_ptr = addend + maybe_resolution->value - TLS_DTV_OFFSET + TLS_TP_STATIC_TLS_BLOCK_OFFSET;
break;
}
#ifdef HAS_TLSDESC_SUPPORT
case TLSDESC: {
auto maybe_resolution = resolve_tls_symbol(relocation);
if (!maybe_resolution.has_value())
break;
auto [dynamic_object_of_symbol, symbol_value] = maybe_resolution.value();
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
patch_ptr[0] = (FlatPtr)__tlsdesc_static;
patch_ptr[1] = addend + dynamic_object_of_symbol.tls_offset().value() + symbol_value;
break;
}
#endif
case IRELATIVE: {
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
return RelocationResult::CallIfuncResolver;
VirtualAddress resolver;
if (relocation.addend_used())
resolver = m_dynamic_object->base_address().offset(relocation.addend());
else
resolver = m_dynamic_object->base_address().offset(*patch_ptr);
if (m_dynamic_object->has_text_relocations()) {
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
return RelocationResult::Failed;
}
*patch_ptr = call_ifunc_resolver(resolver).get();
break;
}
case JUMP_SLOT:
VERIFY_NOT_REACHED(); // PLT relocations are handled by do_plt_relocation.
default:
// Raise the alarm! Someone needs to implement this relocation type
dbgln("Found a new exciting relocation type {}", relocation.type());
VERIFY_NOT_REACHED();
}
return RelocationResult::Success;
}
DynamicLoader::RelocationResult DynamicLoader::do_plt_relocation(DynamicObject::Relocation const& relocation, ShouldCallIfuncResolver should_call_ifunc_resolver)
{
VERIFY(static_cast<GenericDynamicRelocationType>(relocation.type()) == GenericDynamicRelocationType::JUMP_SLOT);
auto symbol = relocation.symbol();
auto* relocation_address = (FlatPtr*)relocation.address().as_ptr();
VirtualAddress symbol_location {};
if (auto result = lookup_symbol(symbol); result.has_value()) {
auto address = result.value().address;
if (result.value().type == STT_GNU_IFUNC) {
if (should_call_ifunc_resolver == ShouldCallIfuncResolver::No)
return RelocationResult::CallIfuncResolver;
symbol_location = VirtualAddress { reinterpret_cast<DynamicObject::IfuncResolver>(address.get())() };
} else {
symbol_location = address;
}
} else if (symbol.bind() != STB_WEAK) {
return RelocationResult::Failed;
}
dbgln_if(DYNAMIC_LOAD_DEBUG, "DynamicLoader: Jump slot relocation: putting {} ({}) into PLT at {}", symbol.name(), symbol_location, (void*)relocation_address);
*relocation_address = symbol_location.get();
return RelocationResult::Success;
}
void DynamicLoader::do_relr_relocations()
{
auto base_address = m_dynamic_object->base_address().get();
m_dynamic_object->for_each_relr_relocation([base_address](FlatPtr address) {
*(FlatPtr*)address += base_address;
});
}
void DynamicLoader::copy_initial_tls_data_into(Bytes buffer) const
{
image().for_each_program_header([this, &buffer](ELF::Image::ProgramHeader program_header) {
if (program_header.type() != PT_TLS)
return IterationDecision::Continue;
// Note: The "size in image" is only concerned with initialized data. Uninitialized data (.tbss) is
// only included in the "size in memory" metric, and is expected to not be touched or read from, as
// it is not present in the image and zeroed out in-memory. We will still check that the buffer has
// space for both the initialized and the uninitialized data.
// TODO: Is the initialized data always in the beginning of the TLS segment, or should we walk the
// sections to figure that out?
VERIFY(program_header.size_in_image() <= program_header.size_in_memory());
VERIFY(program_header.size_in_memory() <= m_tls_size_of_current_object);
if constexpr (TLS_VARIANT == 1) {
size_t tls_start_in_buffer = m_tls_offset;
VERIFY(tls_start_in_buffer + program_header.size_in_memory() <= buffer.size());
memcpy(buffer.data() + tls_start_in_buffer, static_cast<u8 const*>(m_file_data) + program_header.offset(), program_header.size_in_image());
} else if constexpr (TLS_VARIANT == 2) {
size_t tls_start_in_buffer = buffer.size() + m_tls_offset;
VERIFY(tls_start_in_buffer + program_header.size_in_memory() <= buffer.size());
memcpy(buffer.data() + tls_start_in_buffer, static_cast<u8 const*>(m_file_data) + program_header.offset(), program_header.size_in_image());
}
return IterationDecision::Break;
});
}
// Defined in <arch>/plt_trampoline.S
extern "C" void _plt_trampoline(void) __attribute__((visibility("hidden")));
void DynamicLoader::setup_plt_trampoline()
{
VERIFY(m_dynamic_object);
VERIFY(m_dynamic_object->has_plt());
VirtualAddress got_address = m_dynamic_object->plt_got_base_address();
auto* got_ptr = (FlatPtr*)got_address.as_ptr();
#if ARCH(AARCH64) || ARCH(X86_64)
got_ptr[1] = (FlatPtr)m_dynamic_object.ptr();
got_ptr[2] = (FlatPtr)&_plt_trampoline;
#elif ARCH(RISCV64)
got_ptr[0] = (FlatPtr)&_plt_trampoline;
got_ptr[1] = (FlatPtr)m_dynamic_object.ptr();
#else
# error Unknown architecture
#endif
}
// Called from our ASM routine _plt_trampoline.
extern "C" FlatPtr _fixup_plt_entry(DynamicObject* object, u32 relocation_offset)
{
auto const& relocation = object->plt_relocation_section().relocation_at_offset(relocation_offset);
auto result = DynamicLoader::do_plt_relocation(relocation, ShouldCallIfuncResolver::Yes);
if (result != DynamicLoader::RelocationResult::Success) {
dbgln("Loader.so: {} unresolved symbol '{}'", object->filepath(), relocation.symbol().name());
VERIFY_NOT_REACHED();
}
return *reinterpret_cast<FlatPtr*>(relocation.address().as_ptr());
}
void DynamicLoader::call_object_init_functions()
{
typedef void (*InitFunc)();
if (m_dynamic_object->has_init_section()) {
auto init_function = m_dynamic_object->init_section_function();
(init_function)();
}
if (m_dynamic_object->has_init_array_section()) {
auto init_array_section = m_dynamic_object->init_array_section();
InitFunc* init_begin = (InitFunc*)(init_array_section.address().as_ptr());
InitFunc* init_end = init_begin + init_array_section.entry_count();
while (init_begin != init_end) {
// Android sources claim that these can be -1, to be ignored.
// 0 definitely shows up. Apparently 0/-1 are valid? Confusing.
if (!*init_begin || ((FlatPtr)*init_begin == (FlatPtr)-1))
continue;
(*init_begin)();
++init_begin;
}
}
}
Optional<DynamicObject::SymbolLookupResult> DynamicLoader::lookup_symbol(const ELF::DynamicObject::Symbol& symbol)
{
if (symbol.is_undefined() || symbol.bind() == STB_WEAK)
return DynamicLinker::lookup_global_symbol(symbol.name());
return DynamicObject::SymbolLookupResult { symbol.value(), symbol.size(), symbol.address(), symbol.bind(), symbol.type(), &symbol.object() };
}
} // end namespace ELF