216 lines
4.4 KiB
C++
216 lines
4.4 KiB
C++
#include <LibC/assert.h>
|
|
#include <LibM/math.h>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
template<size_t> constexpr double e_to_power();
|
|
template<> constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent> constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t> constexpr size_t factorial();
|
|
template<> constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value> constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
extern "C" {
|
|
double trunc(double x)
|
|
{
|
|
return (int64_t)x;
|
|
}
|
|
|
|
double cos(double angle)
|
|
{
|
|
return sin(angle + M_PI_2);
|
|
}
|
|
|
|
double ampsin(double angle)
|
|
{
|
|
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
|
|
double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
double sin(double angle)
|
|
{
|
|
double vertical_scaling = M_PI_2 * M_PI_2;
|
|
return ampsin(angle) / vertical_scaling;
|
|
}
|
|
|
|
double pow(double x, double y)
|
|
{
|
|
(void)x;
|
|
(void)y;
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double ldexp(double, int exp)
|
|
{
|
|
(void)exp;
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double tanh(double x)
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(2 * x);
|
|
return (exponentiated - 1) / (exponentiated + 1);
|
|
}
|
|
double plusX = exp(x);
|
|
double minusX = exp(-x);
|
|
return (plusX - minusX) / (plusX + minusX);
|
|
}
|
|
|
|
double tan(double angle)
|
|
{
|
|
return ampsin(angle) / ampsin(M_PI_2 + angle);
|
|
}
|
|
|
|
double sqrt(double x)
|
|
{
|
|
double res;
|
|
__asm__("fsqrt" : "=t"(res) : "0"(x));
|
|
return res;
|
|
}
|
|
|
|
double sinh(double x)
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(x);
|
|
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
|
}
|
|
return (exp(x) - exp(-x)) / 2;
|
|
}
|
|
|
|
double log10(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double log(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double fmod(double index, double period)
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
double exp(double exponent)
|
|
{
|
|
double result = 1;
|
|
if (exponent >= 1) {
|
|
size_t integer_part = (size_t)exponent;
|
|
if (integer_part & 1) result *= e_to_power<1>();
|
|
if (integer_part & 2) result *= e_to_power<2>();
|
|
if (integer_part > 3) {
|
|
if (integer_part & 4) result *= e_to_power<4>();
|
|
if (integer_part & 8) result *= e_to_power<8>();
|
|
if (integer_part & 16) result *= e_to_power<16>();
|
|
if (integer_part & 32) result *= e_to_power<32>();
|
|
if (integer_part >= 64) return std::numeric_limits<double>::infinity();
|
|
}
|
|
exponent -= integer_part;
|
|
} else if (exponent < 0)
|
|
return 1 / exp(-exponent);
|
|
double taylor_series_result = 1 + exponent;
|
|
double taylor_series_numerator = exponent * exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<2>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<3>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<4>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<5>();
|
|
return result * taylor_series_result;
|
|
}
|
|
|
|
double cosh(double x)
|
|
{
|
|
if (x < 0) {
|
|
double exponentiated = exp(-x);
|
|
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
|
}
|
|
return (exp(x) + exp(-x)) / 2;
|
|
}
|
|
|
|
double atan2(double, double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double atan(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double asin(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double acos(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double fabs(double value)
|
|
{
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
double log2(double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float log2f(float)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double log2l(long double)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double frexp(double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float frexpf(float, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double frexpl(long double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
}
|