ladybird/Userland/Libraries/LibJS/Bytecode/Generator.h
Lenny Maiorani d00b79568f Libraries: Use default constructors/destructors in LibJS
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cother-other-default-operation-rules

"The compiler is more likely to get the default semantics right and
you cannot implement these functions better than the compiler."
2022-03-16 16:19:40 +00:00

216 lines
7.4 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/NonnullOwnPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/SinglyLinkedList.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/CodeGenerationError.h>
#include <LibJS/Bytecode/Executable.h>
#include <LibJS/Bytecode/IdentifierTable.h>
#include <LibJS/Bytecode/Label.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>
#include <LibJS/Bytecode/StringTable.h>
#include <LibJS/Forward.h>
#include <LibJS/Runtime/FunctionKind.h>
namespace JS::Bytecode {
class Generator {
public:
enum class SurroundingScopeKind {
Global,
Function,
Block,
};
static CodeGenerationErrorOr<NonnullOwnPtr<Executable>> generate(ASTNode const&, FunctionKind = FunctionKind::Normal);
Register allocate_register();
void ensure_enough_space(size_t size)
{
// Make sure there's always enough space for a single jump at the end.
if (!m_current_basic_block->can_grow(size + sizeof(Op::Jump))) {
auto& new_block = make_block();
emit<Op::Jump>().set_targets(
Label { new_block },
{});
switch_to_basic_block(new_block);
}
}
template<typename OpType, typename... Args>
OpType& emit(Args&&... args)
{
VERIFY(!is_current_block_terminated());
// If the block doesn't have enough space, switch to another block
if constexpr (!OpType::IsTerminator)
ensure_enough_space(sizeof(OpType));
void* slot = next_slot();
grow(sizeof(OpType));
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
return *static_cast<OpType*>(slot);
}
template<typename OpType, typename... Args>
OpType& emit_with_extra_register_slots(size_t extra_register_slots, Args&&... args)
{
VERIFY(!is_current_block_terminated());
// If the block doesn't have enough space, switch to another block
if constexpr (!OpType::IsTerminator)
ensure_enough_space(sizeof(OpType) + extra_register_slots * sizeof(Register));
void* slot = next_slot();
grow(sizeof(OpType) + extra_register_slots * sizeof(Register));
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
return *static_cast<OpType*>(slot);
}
CodeGenerationErrorOr<void> emit_load_from_reference(JS::ASTNode const&);
CodeGenerationErrorOr<void> emit_store_to_reference(JS::ASTNode const&);
void begin_continuable_scope(Label continue_target);
void end_continuable_scope();
void begin_breakable_scope(Label breakable_target);
void end_breakable_scope();
[[nodiscard]] Label nearest_continuable_scope() const;
[[nodiscard]] Label nearest_breakable_scope() const;
void switch_to_basic_block(BasicBlock& block)
{
m_current_basic_block = &block;
}
[[nodiscard]] BasicBlock& current_block() { return *m_current_basic_block; }
BasicBlock& make_block(String name = {})
{
if (name.is_empty())
name = String::number(m_next_block++);
m_root_basic_blocks.append(BasicBlock::create(name));
return m_root_basic_blocks.last();
}
bool is_current_block_terminated() const
{
return m_current_basic_block->is_terminated();
}
StringTableIndex intern_string(String string)
{
return m_string_table->insert(move(string));
}
IdentifierTableIndex intern_identifier(FlyString string)
{
return m_identifier_table->insert(move(string));
}
bool is_in_generator_or_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::Generator; }
bool is_in_generator_function() const { return m_enclosing_function_kind == FunctionKind::Generator; }
bool is_in_async_function() const { return m_enclosing_function_kind == FunctionKind::Async; }
enum class BindingMode {
Lexical,
Var,
Global,
};
struct LexicalScope {
SurroundingScopeKind kind;
BindingMode mode;
HashTable<IdentifierTableIndex> known_bindings;
};
void register_binding(IdentifierTableIndex identifier, BindingMode mode = BindingMode::Lexical)
{
m_variable_scopes.last_matching([&](auto& x) { return x.mode == BindingMode::Global || x.mode == mode; })->known_bindings.set(identifier);
}
bool has_binding(IdentifierTableIndex identifier, Optional<BindingMode> const& specific_binding_mode = {})
{
for (auto index = m_variable_scopes.size(); index > 0; --index) {
auto& scope = m_variable_scopes[index - 1];
if (scope.mode != BindingMode::Global && specific_binding_mode.value_or(scope.mode) != scope.mode)
continue;
if (scope.known_bindings.contains(identifier))
return true;
}
return false;
}
void begin_variable_scope(BindingMode mode = BindingMode::Lexical, SurroundingScopeKind kind = SurroundingScopeKind::Block);
void end_variable_scope();
enum class BlockBoundaryType {
Break,
Continue,
Unwind,
LeaveLexicalEnvironment,
LeaveVariableEnvironment,
};
template<typename OpType>
void perform_needed_unwinds(bool is_break_node = false) requires(OpType::IsTerminator)
{
Optional<BlockBoundaryType> boundary_to_stop_at;
if constexpr (IsSame<OpType, Bytecode::Op::Return> || IsSame<OpType, Bytecode::Op::Yield>)
VERIFY(!is_break_node);
else if constexpr (IsSame<OpType, Bytecode::Op::Throw>)
boundary_to_stop_at = BlockBoundaryType::Unwind;
else
boundary_to_stop_at = is_break_node ? BlockBoundaryType::Break : BlockBoundaryType::Continue;
for (size_t i = m_boundaries.size(); i > 0; --i) {
auto boundary = m_boundaries[i - 1];
if (boundary_to_stop_at.has_value() && boundary == *boundary_to_stop_at)
break;
if (boundary == BlockBoundaryType::Unwind)
emit<Bytecode::Op::LeaveUnwindContext>();
else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment)
emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Lexical);
else if (boundary == BlockBoundaryType::LeaveVariableEnvironment)
emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Var);
}
}
void start_boundary(BlockBoundaryType type) { m_boundaries.append(type); }
void end_boundary(BlockBoundaryType type)
{
VERIFY(m_boundaries.last() == type);
m_boundaries.take_last();
}
private:
Generator();
~Generator() = default;
void grow(size_t);
void* next_slot();
BasicBlock* m_current_basic_block { nullptr };
NonnullOwnPtrVector<BasicBlock> m_root_basic_blocks;
NonnullOwnPtr<StringTable> m_string_table;
NonnullOwnPtr<IdentifierTable> m_identifier_table;
u32 m_next_register { 2 };
u32 m_next_block { 1 };
FunctionKind m_enclosing_function_kind { FunctionKind::Normal };
Vector<Label> m_continuable_scopes;
Vector<Label> m_breakable_scopes;
Vector<LexicalScope> m_variable_scopes;
Vector<BlockBoundaryType> m_boundaries;
};
}