ladybird/Userland/Libraries/LibJS/Runtime/Shape.cpp
Andreas Kling 8eacb81eba LibJS: Skip redundant marking of Shape property table keys
All the keys in a property table are guaranteed to be marked via
Shape::m_property_key in each step of the transition chain that leads
up to the Shape.
2023-12-11 20:36:15 +01:00

244 lines
8.6 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Heap/DeferGC.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/VM.h>
namespace JS {
JS_DEFINE_ALLOCATOR(Shape);
Shape* Shape::get_or_prune_cached_forward_transition(TransitionKey const& key)
{
if (!m_forward_transitions)
return nullptr;
auto it = m_forward_transitions->find(key);
if (it == m_forward_transitions->end())
return nullptr;
if (!it->value) {
// The cached forward transition has gone stale (from garbage collection). Prune it.
m_forward_transitions->remove(it);
return nullptr;
}
return it->value;
}
GCPtr<Shape> Shape::get_or_prune_cached_delete_transition(StringOrSymbol const& key)
{
if (!m_delete_transitions)
return nullptr;
auto it = m_delete_transitions->find(key);
if (it == m_delete_transitions->end())
return nullptr;
if (!it->value) {
// The cached delete transition has gone stale (from garbage collection). Prune it.
m_delete_transitions->remove(it);
return nullptr;
}
return it->value.ptr();
}
Shape* Shape::get_or_prune_cached_prototype_transition(Object* prototype)
{
if (!m_prototype_transitions)
return nullptr;
auto it = m_prototype_transitions->find(prototype);
if (it == m_prototype_transitions->end())
return nullptr;
if (!it->value) {
// The cached prototype transition has gone stale (from garbage collection). Prune it.
m_prototype_transitions->remove(it);
return nullptr;
}
return it->value;
}
Shape* Shape::create_put_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, property_key, attributes, TransitionType::Put);
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
return new_shape;
}
Shape* Shape::create_configure_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, property_key, attributes, TransitionType::Configure);
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
return new_shape;
}
Shape* Shape::create_prototype_transition(Object* new_prototype)
{
if (auto* existing_shape = get_or_prune_cached_prototype_transition(new_prototype))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, new_prototype);
if (!m_prototype_transitions)
m_prototype_transitions = make<HashMap<GCPtr<Object>, WeakPtr<Shape>>>();
m_prototype_transitions->set(new_prototype, new_shape.ptr());
return new_shape;
}
Shape::Shape(Realm& realm)
: m_realm(realm)
{
}
Shape::Shape(Shape& previous_shape, StringOrSymbol const& property_key, PropertyAttributes attributes, TransitionType transition_type)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_property_key(property_key)
, m_prototype(previous_shape.m_prototype)
, m_property_count(transition_type == TransitionType::Put ? previous_shape.m_property_count + 1 : previous_shape.m_property_count)
, m_attributes(attributes)
, m_transition_type(transition_type)
{
}
Shape::Shape(Shape& previous_shape, StringOrSymbol const& property_key, TransitionType transition_type)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_property_key(property_key)
, m_prototype(previous_shape.m_prototype)
, m_property_count(previous_shape.m_property_count - 1)
, m_transition_type(transition_type)
{
VERIFY(transition_type == TransitionType::Delete);
}
Shape::Shape(Shape& previous_shape, Object* new_prototype)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_prototype(new_prototype)
, m_property_count(previous_shape.m_property_count)
, m_transition_type(TransitionType::Prototype)
{
}
void Shape::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_realm);
visitor.visit(m_prototype);
visitor.visit(m_previous);
m_property_key.visit_edges(visitor);
// NOTE: We don't need to mark the keys in the property table, since they are guaranteed
// to also be marked by the chain of shapes leading up to this one.
visitor.ignore(m_prototype_transitions);
// FIXME: The forward transition keys should be weak, but we have to mark them for now in case they go stale.
if (m_forward_transitions) {
for (auto& it : *m_forward_transitions)
it.key.property_key.visit_edges(visitor);
}
// FIXME: The delete transition keys should be weak, but we have to mark them for now in case they go stale.
if (m_delete_transitions) {
for (auto& it : *m_delete_transitions)
it.key.visit_edges(visitor);
}
}
Optional<PropertyMetadata> Shape::lookup(StringOrSymbol const& property_key) const
{
if (m_property_count == 0)
return {};
auto property = property_table().get(property_key);
if (!property.has_value())
return {};
return property;
}
FLATTEN OrderedHashMap<StringOrSymbol, PropertyMetadata> const& Shape::property_table() const
{
ensure_property_table();
return *m_property_table;
}
void Shape::ensure_property_table() const
{
if (m_property_table)
return;
m_property_table = make<OrderedHashMap<StringOrSymbol, PropertyMetadata>>();
u32 next_offset = 0;
Vector<Shape const&, 64> transition_chain;
transition_chain.append(*this);
for (auto shape = m_previous; shape; shape = shape->m_previous) {
if (shape->m_property_table) {
*m_property_table = *shape->m_property_table;
next_offset = shape->m_property_count;
break;
}
transition_chain.append(*shape);
}
for (auto const& shape : transition_chain.in_reverse()) {
if (!shape.m_property_key.is_valid()) {
// Ignore prototype transitions as they don't affect the key map.
continue;
}
if (shape.m_transition_type == TransitionType::Put) {
m_property_table->set(shape.m_property_key, { next_offset++, shape.m_attributes });
} else if (shape.m_transition_type == TransitionType::Configure) {
auto it = m_property_table->find(shape.m_property_key);
VERIFY(it != m_property_table->end());
it->value.attributes = shape.m_attributes;
} else if (shape.m_transition_type == TransitionType::Delete) {
auto remove_it = m_property_table->find(shape.m_property_key);
VERIFY(remove_it != m_property_table->end());
auto removed_offset = remove_it->value.offset;
m_property_table->remove(remove_it);
for (auto& it : *m_property_table) {
if (it.value.offset > removed_offset)
--it.value.offset;
}
--next_offset;
}
}
}
NonnullGCPtr<Shape> Shape::create_delete_transition(StringOrSymbol const& property_key)
{
if (auto existing_shape = get_or_prune_cached_delete_transition(property_key))
return *existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, property_key, TransitionType::Delete);
if (!m_delete_transitions)
m_delete_transitions = make<HashMap<StringOrSymbol, WeakPtr<Shape>>>();
m_delete_transitions->set(property_key, new_shape.ptr());
return new_shape;
}
void Shape::add_property_without_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
VERIFY(property_key.is_valid());
ensure_property_table();
if (m_property_table->set(property_key, { m_property_count, attributes }) == AK::HashSetResult::InsertedNewEntry) {
VERIFY(m_property_count < NumericLimits<u32>::max());
++m_property_count;
}
}
FLATTEN void Shape::add_property_without_transition(PropertyKey const& property_key, PropertyAttributes attributes)
{
VERIFY(property_key.is_valid());
add_property_without_transition(property_key.to_string_or_symbol(), attributes);
}
}