mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-12 01:10:42 +00:00
ed46d52252
AK's version should see better inlining behaviors, than the LibM one. We avoid mixed usage for now though. Also clean up some stale math includes and improper floatingpoint usage.
294 lines
6.8 KiB
C++
294 lines
6.8 KiB
C++
/*
|
|
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Math.h>
|
|
|
|
#ifdef __cplusplus
|
|
# if __cplusplus >= 201103L
|
|
# define COMPLEX_NOEXCEPT noexcept
|
|
# endif
|
|
namespace AK {
|
|
|
|
template<AK::Concepts::Arithmetic T>
|
|
class [[gnu::packed]] Complex {
|
|
public:
|
|
constexpr Complex()
|
|
: m_real(0)
|
|
, m_imag(0)
|
|
{
|
|
}
|
|
|
|
constexpr Complex(T real)
|
|
: m_real(real)
|
|
, m_imag((T)0)
|
|
{
|
|
}
|
|
|
|
constexpr Complex(T real, T imaginary)
|
|
: m_real(real)
|
|
, m_imag(imaginary)
|
|
{
|
|
}
|
|
|
|
constexpr T real() const COMPLEX_NOEXCEPT { return m_real; }
|
|
|
|
constexpr T imag() const COMPLEX_NOEXCEPT { return m_imag; }
|
|
|
|
constexpr T magnitude_squared() const COMPLEX_NOEXCEPT { return m_real * m_real + m_imag * m_imag; }
|
|
|
|
constexpr T magnitude() const COMPLEX_NOEXCEPT
|
|
{
|
|
return hypot(m_real, m_imag);
|
|
}
|
|
|
|
constexpr T phase() const COMPLEX_NOEXCEPT
|
|
{
|
|
return atan2(m_imag, m_real);
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U, AK::Concepts::Arithmetic V>
|
|
static constexpr Complex<T> from_polar(U magnitude, V phase)
|
|
{
|
|
return Complex<T>(magnitude * cos(phase), magnitude * sin(phase));
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T>& operator=(const Complex<U>& other)
|
|
{
|
|
m_real = other.real();
|
|
m_imag = other.imag();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T>& operator=(const U& x)
|
|
{
|
|
m_real = x;
|
|
m_imag = 0;
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator+=(const Complex<U>& x)
|
|
{
|
|
m_real += x.real();
|
|
m_imag += x.imag();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator+=(const U& x)
|
|
{
|
|
m_real += x.real();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator-=(const Complex<U>& x)
|
|
{
|
|
m_real -= x.real();
|
|
m_imag -= x.imag();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator-=(const U& x)
|
|
{
|
|
m_real -= x.real();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator*=(const Complex<U>& x)
|
|
{
|
|
const T real = m_real;
|
|
m_real = real * x.real() - m_imag * x.imag();
|
|
m_imag = real * x.imag() + m_imag * x.real();
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator*=(const U& x)
|
|
{
|
|
m_real *= x;
|
|
m_imag *= x;
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator/=(const Complex<U>& x)
|
|
{
|
|
const T real = m_real;
|
|
const T divisor = x.real() * x.real() + x.imag() * x.imag();
|
|
m_real = (real * x.real() + m_imag * x.imag()) / divisor;
|
|
m_imag = (m_imag * x.real() - x.real() * x.imag()) / divisor;
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator/=(const U& x)
|
|
{
|
|
m_real /= x;
|
|
m_imag /= x;
|
|
return *this;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator+(const Complex<U>& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x += a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator+(const U& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x += a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator-(const Complex<U>& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x -= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator-(const U& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x -= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator*(const Complex<U>& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x *= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator*(const U& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x *= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator/(const Complex<U>& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x /= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator/(const U& a)
|
|
{
|
|
Complex<T> x = *this;
|
|
x /= a;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr bool operator==(const Complex<U>& a) const
|
|
{
|
|
return (this->real() == a.real()) && (this->imag() == a.imag());
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic U>
|
|
constexpr bool operator!=(const Complex<U>& a) const
|
|
{
|
|
return !(*this == a);
|
|
}
|
|
|
|
constexpr Complex<T> operator+()
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
constexpr Complex<T> operator-()
|
|
{
|
|
return Complex<T>(-m_real, -m_imag);
|
|
}
|
|
|
|
private:
|
|
T m_real;
|
|
T m_imag;
|
|
};
|
|
|
|
// reverse associativity operators for scalars
|
|
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator+(const U& b, const Complex<T>& a)
|
|
{
|
|
Complex<T> x = a;
|
|
x += b;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator-(const U& b, const Complex<T>& a)
|
|
{
|
|
Complex<T> x = a;
|
|
x -= b;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator*(const U& b, const Complex<T>& a)
|
|
{
|
|
Complex<T> x = a;
|
|
x *= b;
|
|
return x;
|
|
}
|
|
|
|
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
|
constexpr Complex<T> operator/(const U& b, const Complex<T>& a)
|
|
{
|
|
Complex<T> x = a;
|
|
x /= b;
|
|
return x;
|
|
}
|
|
|
|
// some identities
|
|
template<AK::Concepts::Arithmetic T>
|
|
static constinit Complex<T> complex_real_unit = Complex<T>((T)1, (T)0);
|
|
template<AK::Concepts::Arithmetic T>
|
|
static constinit Complex<T> complex_imag_unit = Complex<T>((T)0, (T)1);
|
|
|
|
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
|
static constexpr bool approx_eq(const Complex<T>& a, const Complex<U>& b, const double margin = 0.000001)
|
|
{
|
|
const auto x = const_cast<Complex<T>&>(a) - const_cast<Complex<U>&>(b);
|
|
return x.magnitude() <= margin;
|
|
}
|
|
|
|
// complex version of exp()
|
|
template<AK::Concepts::Arithmetic T>
|
|
static constexpr Complex<T> cexp(const Complex<T>& a)
|
|
{
|
|
// FIXME: this can probably be faster and not use so many "expensive" trigonometric functions
|
|
return exp(a.real()) * Complex<T>(cos(a.imag()), sin(a.imag()));
|
|
}
|
|
}
|
|
|
|
using AK::approx_eq;
|
|
using AK::cexp;
|
|
using AK::Complex;
|
|
using AK::complex_imag_unit;
|
|
using AK::complex_real_unit;
|
|
|
|
#endif
|