ladybird/Userland/Libraries/LibWasm/AbstractMachine/Interpreter.cpp
Ali Mohammad Pur 84e3957dc3 LibWasm: Implement most of the remaining instructions
This commit is a bit of a mixed bag, but most of the changes are
repetitive enough to just include in a single commit.
The following instructions remain unimplemented:
- br.table
- table.init
- table.get
- table.set
- table.copy
- table.size
- table.grow
- table.fill
- ref.null
- ref.func
- ref.is_null
- drop
- i32/i64.clz
- i32/i64.ctz
- i32/i64.popcnt
- i32/i64.rotl
- i32/i64.rotr
- X.trunc.Y
- X.trunc_sat.Y
- memory.size
- memory.grow
- memory.init
- memory.copy
- memory.fill
- elem.drop
- data.drop
2021-05-17 23:25:30 +02:00

742 lines
32 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/AbstractMachine/Interpreter.h>
#include <LibWasm/Opcode.h>
#include <LibWasm/Printer/Printer.h>
#include <math.h>
namespace Wasm {
void Interpreter::interpret(Configuration& configuration)
{
auto& instructions = configuration.frame()->expression().instructions();
auto max_ip_value = InstructionPointer { instructions.size() };
auto& current_ip_value = configuration.ip();
while (current_ip_value < max_ip_value) {
auto& instruction = instructions[current_ip_value.value()];
interpret(configuration, current_ip_value, instruction);
++current_ip_value;
}
}
void Interpreter::branch_to_label(Configuration& configuration, LabelIndex index)
{
auto label = configuration.nth_label(index.value());
VERIFY(label.has_value());
NonnullOwnPtrVector<Value> results;
// Pop results in order
for (size_t i = 0; i < label->arity(); ++i)
results.append(move(configuration.stack().pop().get<NonnullOwnPtr<Value>>()));
size_t drop_count = index.value() + 1;
if (label->continuation() < configuration.ip())
--drop_count;
for (; !configuration.stack().is_empty();) {
auto entry = configuration.stack().pop();
if (entry.has<NonnullOwnPtr<Label>>()) {
if (drop_count-- == 0)
break;
}
}
// Push results in reverse
for (size_t i = results.size(); i > 0; --i)
configuration.stack().push(move(static_cast<Vector<NonnullOwnPtr<Value>>&>(results)[i - 1]));
configuration.ip() = label->continuation() + 1;
}
ReadonlyBytes Interpreter::load_from_memory(Configuration& configuration, const Instruction& instruction, size_t size)
{
auto& address = configuration.frame()->module().memories().first();
auto memory = configuration.store().get(address);
VERIFY(memory);
auto& arg = instruction.arguments().get<Instruction::MemoryArgument>();
auto base = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
VERIFY(base.has_value());
auto instance_address = base.value() + static_cast<i64>(arg.offset);
if (instance_address < 0 || static_cast<u64>(instance_address + size) > memory->size()) {
dbgln("LibWasm: Memory access out of bounds (expected 0 > {} and {} > {})", instance_address, instance_address + size, memory->size());
return {};
}
dbgln_if(WASM_TRACE_DEBUG, "load({} : {}) -> stack", instance_address, size);
return memory->data().bytes().slice(instance_address, size);
}
void Interpreter::store_to_memory(Configuration& configuration, const Instruction& instruction, ReadonlyBytes data)
{
auto& address = configuration.frame()->module().memories().first();
auto memory = configuration.store().get(address);
VERIFY(memory);
auto& arg = instruction.arguments().get<Instruction::MemoryArgument>();
auto base = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
VERIFY(base.has_value());
auto instance_address = base.value() + static_cast<i64>(arg.offset);
if (instance_address < 0 || static_cast<u64>(instance_address + data.size()) > memory->size()) {
dbgln("LibWasm: Memory access out of bounds (expected 0 > {} and {} > {})", instance_address, instance_address + data.size(), memory->size());
return;
}
dbgln_if(WASM_TRACE_DEBUG, "tempoaray({}b) -> store({})", data.size(), instance_address);
data.copy_to(memory->data().bytes().slice(instance_address, data.size()));
}
void Interpreter::call_address(Configuration& configuration, FunctionAddress address)
{
auto instance = configuration.store().get(address);
VERIFY(instance);
const FunctionType* type { nullptr };
instance->visit([&](const auto& function) { type = &function.type(); });
VERIFY(type);
Vector<Value> args;
args.ensure_capacity(type->parameters().size());
for (size_t i = 0; i < type->parameters().size(); ++i) {
args.prepend(move(*configuration.stack().pop().get<NonnullOwnPtr<Value>>()));
}
Configuration function_configuration { configuration.store() };
function_configuration.depth() = configuration.depth() + 1;
auto result = function_configuration.call(address, move(args));
if (result.is_trap())
TODO();
for (auto& entry : result.values())
configuration.stack().push(make<Value>(move(entry)));
}
#define BINARY_NUMERIC_OPERATION(type, operator, ...) \
do { \
auto rhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>(); \
auto lhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>(); \
VERIFY(lhs.has_value()); \
VERIFY(rhs.has_value()); \
auto result = lhs.value() operator rhs.value(); \
dbgln_if(WASM_TRACE_DEBUG, "{} {} {} = {}", lhs.value(), #operator, rhs.value(), result); \
configuration.stack().push(make<Value>(__VA_ARGS__(result))); \
return; \
} while (false)
#define BINARY_PREFIX_NUMERIC_OPERATION(type, operation, ...) \
do { \
auto rhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>(); \
auto lhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>(); \
VERIFY(lhs.has_value()); \
VERIFY(rhs.has_value()); \
auto result = operation(lhs.value(), rhs.value()); \
dbgln_if(WASM_TRACE_DEBUG, "{}({} {}) = {}", #operation, lhs.value(), rhs.value(), result); \
configuration.stack().push(make<Value>(__VA_ARGS__(result))); \
return; \
} while (false)
#define UNARY_MAP(pop_type, operation, ...) \
do { \
auto value = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<pop_type>(); \
VERIFY(value.has_value()); \
auto result = operation(value.value()); \
dbgln_if(WASM_TRACE_DEBUG, "map({}) {} = {}", #operation, value.value(), result); \
configuration.stack().push(make<Value>(__VA_ARGS__(result))); \
return; \
} while (false)
#define UNARY_NUMERIC_OPERATION(type, operation) \
UNARY_MAP(type, operation, type)
#define LOAD_AND_PUSH(read_type, push_type) \
do { \
auto slice = load_from_memory(configuration, instruction, sizeof(read_type)); \
VERIFY(slice.size() == sizeof(read_type)); \
if constexpr (sizeof(read_type) == 1) \
configuration.stack().push(make<Value>(static_cast<push_type>(slice[0]))); \
else \
configuration.stack().push(make<Value>(read_value<push_type>(slice))); \
return; \
} while (false)
#define POP_AND_STORE(pop_type, store_type) \
do { \
auto value = ConvertToRaw<pop_type> {}(*configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<pop_type>()); \
dbgln_if(WASM_TRACE_DEBUG, "stack({}) -> temporary({}b)", value, sizeof(store_type)); \
store_to_memory(configuration, instruction, { &value, sizeof(store_type) }); \
return; \
} while (false)
template<typename T>
static T read_value(ReadonlyBytes data)
{
T value;
InputMemoryStream stream { data };
auto ok = IsSigned<T> ? LEB128::read_signed(stream, value) : LEB128::read_unsigned(stream, value);
VERIFY(ok);
return value;
}
template<>
float read_value<float>(ReadonlyBytes data)
{
InputMemoryStream stream { data };
LittleEndian<u32> raw_value;
stream >> raw_value;
VERIFY(!stream.has_any_error());
return bit_cast<float>(static_cast<u32>(raw_value));
}
template<>
double read_value<double>(ReadonlyBytes data)
{
InputMemoryStream stream { data };
LittleEndian<u64> raw_value;
stream >> raw_value;
VERIFY(!stream.has_any_error());
return bit_cast<double>(static_cast<u64>(raw_value));
}
template<typename T>
struct ConvertToRaw {
T operator()(T value)
{
return value;
}
};
template<>
struct ConvertToRaw<float> {
u32 operator()(float value)
{
LittleEndian<u32> res;
ReadonlyBytes bytes { &value, sizeof(float) };
InputMemoryStream stream { bytes };
stream >> res;
VERIFY(!stream.has_any_error());
return static_cast<u32>(res);
}
};
template<>
struct ConvertToRaw<double> {
u64 operator()(double value)
{
LittleEndian<u64> res;
ReadonlyBytes bytes { &value, sizeof(double) };
InputMemoryStream stream { bytes };
stream >> res;
VERIFY(!stream.has_any_error());
return static_cast<u64>(res);
}
};
void Interpreter::interpret(Configuration& configuration, InstructionPointer& ip, const Instruction& instruction)
{
dbgln_if(WASM_TRACE_DEBUG, "Executing instruction {} at ip {}", instruction_name(instruction.opcode()), ip.value());
if constexpr (WASM_TRACE_DEBUG)
configuration.dump_stack();
switch (instruction.opcode().value()) {
case Instructions::unreachable.value():
VERIFY_NOT_REACHED(); // FIXME: This is definitely not right :)
case Instructions::nop.value():
return;
case Instructions::local_get.value():
configuration.stack().push(make<Value>(configuration.frame()->locals()[instruction.arguments().get<LocalIndex>().value()]));
return;
case Instructions::local_set.value(): {
auto entry = configuration.stack().pop();
configuration.frame()->locals()[instruction.arguments().get<LocalIndex>().value()] = move(*entry.get<NonnullOwnPtr<Value>>());
return;
}
case Instructions::i32_const.value():
configuration.stack().push(make<Value>(ValueType { ValueType::I32 }, static_cast<i64>(instruction.arguments().get<i32>())));
return;
case Instructions::i64_const.value():
configuration.stack().push(make<Value>(ValueType { ValueType::I64 }, instruction.arguments().get<i64>()));
return;
case Instructions::f32_const.value():
configuration.stack().push(make<Value>(ValueType { ValueType::F32 }, static_cast<double>(instruction.arguments().get<float>())));
return;
case Instructions::f64_const.value():
configuration.stack().push(make<Value>(ValueType { ValueType::F64 }, instruction.arguments().get<double>()));
return;
case Instructions::block.value(): {
size_t arity = 0;
auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
if (args.block_type.kind() != BlockType::Empty)
arity = 1;
configuration.stack().push(make<Label>(arity, args.end_ip));
return;
}
case Instructions::loop.value(): {
size_t arity = 0;
auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
if (args.block_type.kind() != BlockType::Empty)
arity = 1;
configuration.stack().push(make<Label>(arity, ip.value() + 1));
return;
}
case Instructions::if_.value(): {
size_t arity = 0;
auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
if (args.block_type.kind() != BlockType::Empty)
arity = 1;
auto entry = configuration.stack().pop();
auto value = entry.get<NonnullOwnPtr<Value>>()->to<i32>();
VERIFY(value.has_value());
configuration.stack().push(make<Label>(arity, args.end_ip));
if (value.value() == 0) {
if (args.else_ip.has_value()) {
configuration.ip() = args.else_ip.value();
} else {
configuration.ip() = args.end_ip;
configuration.stack().pop();
}
}
return;
}
case Instructions::structured_end.value():
return;
case Instructions::structured_else.value(): {
auto label = configuration.nth_label(0);
VERIFY(label.has_value());
NonnullOwnPtrVector<Value> results;
// Pop results in order
for (size_t i = 0; i < label->arity(); ++i)
results.append(move(configuration.stack().pop().get<NonnullOwnPtr<Value>>()));
// drop all locals
for (; !configuration.stack().is_empty();) {
auto entry = configuration.stack().pop();
if (entry.has<NonnullOwnPtr<Label>>())
break;
}
// Push results in reverse
for (size_t i = 1; i < results.size() + 1; ++i)
configuration.stack().push(move(static_cast<Vector<NonnullOwnPtr<Value>>&>(results)[results.size() - i]));
if (instruction.opcode() == Instructions::structured_end)
return;
// Jump to the end label
configuration.ip() = label->continuation();
return;
}
case Instructions::return_.value(): {
Vector<Stack::EntryType> results;
auto& frame = *configuration.frame();
results.ensure_capacity(frame.arity());
for (size_t i = 0; i < frame.arity(); ++i)
results.prepend(configuration.stack().pop());
// drop all locals
OwnPtr<Label> last_label;
for (; !configuration.stack().is_empty();) {
auto entry = configuration.stack().pop();
if (entry.has<NonnullOwnPtr<Label>>()) {
last_label = move(entry.get<NonnullOwnPtr<Label>>());
continue;
}
if (entry.has<NonnullOwnPtr<Frame>>()) {
// Push the frame back
configuration.stack().push(move(entry));
// Push its label back (if there is one)
if (last_label)
configuration.stack().push(last_label.release_nonnull());
break;
}
last_label.clear();
}
// Push the results back
for (auto& result : results)
configuration.stack().push(move(result));
// Jump past the call/indirect instruction
configuration.ip() = configuration.frame()->expression().instructions().size() - 1;
return;
}
case Instructions::br.value():
return branch_to_label(configuration, instruction.arguments().get<LabelIndex>());
case Instructions::br_if.value(): {
if (configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>().value_or(0) == 0)
return;
return branch_to_label(configuration, instruction.arguments().get<LabelIndex>());
}
case Instructions::br_table.value():
goto unimplemented;
case Instructions::call.value(): {
auto index = instruction.arguments().get<FunctionIndex>();
auto address = configuration.frame()->module().functions()[index.value()];
dbgln_if(WASM_TRACE_DEBUG, "call({})", address.value());
call_address(configuration, address);
return;
}
case Instructions::call_indirect.value(): {
auto& args = instruction.arguments().get<Instruction::IndirectCallArgs>();
auto table_address = configuration.frame()->module().tables()[args.table.value()];
auto table_instance = configuration.store().get(table_address);
auto index = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
VERIFY(index.has_value());
if (index.value() < 0 || static_cast<size_t>(index.value()) >= table_instance->elements().size()) {
dbgln("LibWasm: Element access out of bounds, expected {0} > 0 and {0} < {1}", index.value(), table_instance->elements().size());
return;
}
auto element = table_instance->elements()[index.value()];
if (!element.has_value() || !element->ref().has<FunctionAddress>()) {
dbgln("LibWasm: call_indirect attempted with invalid address element (not a function)");
return;
}
auto address = element->ref().get<FunctionAddress>();
dbgln_if(WASM_TRACE_DEBUG, "call_indirect({} -> {})", index.value(), address.value());
call_address(configuration, address);
return;
}
case Instructions::i32_load.value():
LOAD_AND_PUSH(i32, i32);
case Instructions::i64_load.value():
LOAD_AND_PUSH(i64, i64);
case Instructions::f32_load.value():
LOAD_AND_PUSH(float, float);
case Instructions::f64_load.value():
LOAD_AND_PUSH(double, double);
case Instructions::i32_load8_s.value():
LOAD_AND_PUSH(i8, i32);
case Instructions::i32_load8_u.value():
LOAD_AND_PUSH(u8, i32);
case Instructions::i32_load16_s.value():
LOAD_AND_PUSH(i16, i32);
case Instructions::i32_load16_u.value():
LOAD_AND_PUSH(u16, i32);
case Instructions::i64_load8_s.value():
LOAD_AND_PUSH(i8, i64);
case Instructions::i64_load8_u.value():
LOAD_AND_PUSH(u8, i64);
case Instructions::i64_load16_s.value():
LOAD_AND_PUSH(i16, i64);
case Instructions::i64_load16_u.value():
LOAD_AND_PUSH(u16, i64);
case Instructions::i64_load32_s.value():
LOAD_AND_PUSH(i32, i64);
case Instructions::i64_load32_u.value():
LOAD_AND_PUSH(u32, i64);
case Instructions::i32_store.value():
POP_AND_STORE(i32, i32);
case Instructions::i64_store.value():
POP_AND_STORE(i64, i64);
case Instructions::f32_store.value():
POP_AND_STORE(float, float);
case Instructions::f64_store.value():
POP_AND_STORE(double, double);
case Instructions::i32_store8.value():
POP_AND_STORE(i32, i8);
case Instructions::i32_store16.value():
POP_AND_STORE(i32, i16);
case Instructions::i64_store8.value():
POP_AND_STORE(i64, i8);
case Instructions::i64_store16.value():
POP_AND_STORE(i64, i16);
case Instructions::i64_store32.value():
POP_AND_STORE(i64, i32);
case Instructions::local_tee.value(): {
auto value = *configuration.stack().peek().get<NonnullOwnPtr<Value>>();
auto local_index = instruction.arguments().get<LocalIndex>();
dbgln_if(WASM_TRACE_DEBUG, "stack:peek -> locals({})", local_index.value());
configuration.frame()->locals()[local_index.value()] = move(value);
return;
}
case Instructions::global_get.value(): {
auto global_index = instruction.arguments().get<GlobalIndex>();
auto address = configuration.frame()->module().globals()[global_index.value()];
dbgln_if(WASM_TRACE_DEBUG, "global({}) -> stack", address.value());
auto global = configuration.store().get(address);
configuration.stack().push(make<Value>(global->value()));
return;
}
case Instructions::global_set.value(): {
auto global_index = instruction.arguments().get<GlobalIndex>();
auto address = configuration.frame()->module().globals()[global_index.value()];
auto value = *configuration.stack().pop().get<NonnullOwnPtr<Value>>();
dbgln_if(WASM_TRACE_DEBUG, "stack -> global({})", address.value());
auto global = configuration.store().get(address);
global->set_value(move(value));
return;
}
case Instructions::memory_size.value():
case Instructions::memory_grow.value():
case Instructions::table_get.value():
case Instructions::table_set.value():
case Instructions::ref_null.value():
case Instructions::ref_func.value():
case Instructions::ref_is_null.value():
case Instructions::drop.value():
goto unimplemented;
case Instructions::select.value():
case Instructions::select_typed.value(): {
// Note: The type seems to only be used for validation.
auto value = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
VERIFY(value.has_value());
dbgln_if(WASM_TRACE_DEBUG, "select({})", value.value());
auto rhs = move(configuration.stack().pop().get<NonnullOwnPtr<Value>>());
auto lhs = move(configuration.stack().pop().get<NonnullOwnPtr<Value>>());
configuration.stack().push(value.value() != 0 ? move(lhs) : move(rhs));
return;
}
case Instructions::i32_eqz.value():
UNARY_NUMERIC_OPERATION(i32, 0 ==);
case Instructions::i32_eq.value():
BINARY_NUMERIC_OPERATION(i32, ==);
case Instructions::i32_ne.value():
BINARY_NUMERIC_OPERATION(i32, !=);
case Instructions::i32_lts.value():
BINARY_NUMERIC_OPERATION(i32, <);
case Instructions::i32_ltu.value():
BINARY_NUMERIC_OPERATION(u32, <);
case Instructions::i32_gts.value():
BINARY_NUMERIC_OPERATION(i32, >);
case Instructions::i32_gtu.value():
BINARY_NUMERIC_OPERATION(u32, >);
case Instructions::i32_les.value():
BINARY_NUMERIC_OPERATION(i32, <=);
case Instructions::i32_leu.value():
BINARY_NUMERIC_OPERATION(u32, <=);
case Instructions::i32_ges.value():
BINARY_NUMERIC_OPERATION(i32, >=);
case Instructions::i32_geu.value():
BINARY_NUMERIC_OPERATION(u32, >=);
case Instructions::i64_eqz.value():
UNARY_NUMERIC_OPERATION(i64, 0ull ==);
case Instructions::i64_eq.value():
BINARY_NUMERIC_OPERATION(i64, ==);
case Instructions::i64_ne.value():
BINARY_NUMERIC_OPERATION(i64, !=);
case Instructions::i64_lts.value():
BINARY_NUMERIC_OPERATION(i64, <);
case Instructions::i64_ltu.value():
BINARY_NUMERIC_OPERATION(u64, <);
case Instructions::i64_gts.value():
BINARY_NUMERIC_OPERATION(i64, >);
case Instructions::i64_gtu.value():
BINARY_NUMERIC_OPERATION(u64, >);
case Instructions::i64_les.value():
BINARY_NUMERIC_OPERATION(i64, <=);
case Instructions::i64_leu.value():
BINARY_NUMERIC_OPERATION(u64, <=);
case Instructions::i64_ges.value():
BINARY_NUMERIC_OPERATION(i64, >=);
case Instructions::i64_geu.value():
BINARY_NUMERIC_OPERATION(u64, >=);
case Instructions::f32_eq.value():
BINARY_NUMERIC_OPERATION(float, ==);
case Instructions::f32_ne.value():
BINARY_NUMERIC_OPERATION(float, !=);
case Instructions::f32_lt.value():
BINARY_NUMERIC_OPERATION(float, <);
case Instructions::f32_gt.value():
BINARY_NUMERIC_OPERATION(float, >);
case Instructions::f32_le.value():
BINARY_NUMERIC_OPERATION(float, <=);
case Instructions::f32_ge.value():
BINARY_NUMERIC_OPERATION(float, >=);
case Instructions::f64_eq.value():
BINARY_NUMERIC_OPERATION(double, ==);
case Instructions::f64_ne.value():
BINARY_NUMERIC_OPERATION(double, !=);
case Instructions::f64_lt.value():
BINARY_NUMERIC_OPERATION(double, <);
case Instructions::f64_gt.value():
BINARY_NUMERIC_OPERATION(double, >);
case Instructions::f64_le.value():
BINARY_NUMERIC_OPERATION(double, <=);
case Instructions::f64_ge.value():
BINARY_NUMERIC_OPERATION(double, >);
case Instructions::i32_clz.value():
case Instructions::i32_ctz.value():
case Instructions::i32_popcnt.value():
goto unimplemented;
case Instructions::i32_add.value():
BINARY_NUMERIC_OPERATION(i32, +, i32);
case Instructions::i32_sub.value():
BINARY_NUMERIC_OPERATION(i32, -, i32);
case Instructions::i32_mul.value():
BINARY_NUMERIC_OPERATION(i32, *, i32);
case Instructions::i32_divs.value():
BINARY_NUMERIC_OPERATION(i32, /, i32);
case Instructions::i32_divu.value():
BINARY_NUMERIC_OPERATION(u32, /, i32);
case Instructions::i32_rems.value():
BINARY_NUMERIC_OPERATION(i32, %, i32);
case Instructions::i32_remu.value():
BINARY_NUMERIC_OPERATION(u32, %, i32);
case Instructions::i32_and.value():
BINARY_NUMERIC_OPERATION(i32, &, i32);
case Instructions::i32_or.value():
BINARY_NUMERIC_OPERATION(i32, |, i32);
case Instructions::i32_xor.value():
BINARY_NUMERIC_OPERATION(i32, ^, i32);
case Instructions::i32_shl.value():
BINARY_NUMERIC_OPERATION(i32, <<, i32);
case Instructions::i32_shrs.value():
BINARY_NUMERIC_OPERATION(i32, >>, i32);
case Instructions::i32_shru.value():
BINARY_NUMERIC_OPERATION(u32, >>, i32);
case Instructions::i32_rotl.value():
case Instructions::i32_rotr.value():
case Instructions::i64_clz.value():
case Instructions::i64_ctz.value():
case Instructions::i64_popcnt.value():
goto unimplemented;
case Instructions::i64_add.value():
BINARY_NUMERIC_OPERATION(i64, +, i64);
case Instructions::i64_sub.value():
BINARY_NUMERIC_OPERATION(i64, -, i64);
case Instructions::i64_mul.value():
BINARY_NUMERIC_OPERATION(i64, *, i64);
case Instructions::i64_divs.value():
BINARY_NUMERIC_OPERATION(i64, /, i64);
case Instructions::i64_divu.value():
BINARY_NUMERIC_OPERATION(u64, /, i64);
case Instructions::i64_rems.value():
BINARY_NUMERIC_OPERATION(i64, %, i64);
case Instructions::i64_remu.value():
BINARY_NUMERIC_OPERATION(u64, %, i64);
case Instructions::i64_and.value():
BINARY_NUMERIC_OPERATION(i64, &, i64);
case Instructions::i64_or.value():
BINARY_NUMERIC_OPERATION(i64, |, i64);
case Instructions::i64_xor.value():
BINARY_NUMERIC_OPERATION(i64, ^, i64);
case Instructions::i64_shl.value():
BINARY_NUMERIC_OPERATION(i64, <<, i64);
case Instructions::i64_shrs.value():
BINARY_NUMERIC_OPERATION(i64, >>, i64);
case Instructions::i64_shru.value():
BINARY_NUMERIC_OPERATION(u64, >>, i64);
case Instructions::i64_rotl.value():
case Instructions::i64_rotr.value():
goto unimplemented;
case Instructions::f32_abs.value():
UNARY_NUMERIC_OPERATION(float, fabsf);
case Instructions::f32_neg.value():
UNARY_NUMERIC_OPERATION(float, -);
case Instructions::f32_ceil.value():
UNARY_NUMERIC_OPERATION(float, ceilf);
case Instructions::f32_floor.value():
UNARY_NUMERIC_OPERATION(float, floorf);
case Instructions::f32_trunc.value():
UNARY_NUMERIC_OPERATION(float, truncf);
case Instructions::f32_nearest.value():
UNARY_NUMERIC_OPERATION(float, roundf);
case Instructions::f32_sqrt.value():
UNARY_NUMERIC_OPERATION(float, sqrtf);
case Instructions::f32_add.value():
UNARY_NUMERIC_OPERATION(float, +);
case Instructions::f32_sub.value():
UNARY_NUMERIC_OPERATION(float, -);
case Instructions::f32_mul.value():
BINARY_NUMERIC_OPERATION(float, *, float);
case Instructions::f32_div.value():
BINARY_NUMERIC_OPERATION(float, /, float);
case Instructions::f32_min.value():
BINARY_PREFIX_NUMERIC_OPERATION(float, min, float);
case Instructions::f32_max.value():
BINARY_PREFIX_NUMERIC_OPERATION(float, max, float);
case Instructions::f32_copysign.value():
BINARY_PREFIX_NUMERIC_OPERATION(float, copysignf, float);
case Instructions::f64_abs.value():
UNARY_NUMERIC_OPERATION(double, fabs);
case Instructions::f64_neg.value():
UNARY_NUMERIC_OPERATION(double, -);
case Instructions::f64_ceil.value():
UNARY_NUMERIC_OPERATION(double, ceil);
case Instructions::f64_floor.value():
UNARY_NUMERIC_OPERATION(double, floor);
case Instructions::f64_trunc.value():
UNARY_NUMERIC_OPERATION(double, trunc);
case Instructions::f64_nearest.value():
UNARY_NUMERIC_OPERATION(double, round);
case Instructions::f64_sqrt.value():
UNARY_NUMERIC_OPERATION(double, sqrt);
case Instructions::f64_add.value():
BINARY_NUMERIC_OPERATION(double, +, double);
case Instructions::f64_sub.value():
BINARY_NUMERIC_OPERATION(double, -, double);
case Instructions::f64_mul.value():
BINARY_NUMERIC_OPERATION(double, *, double);
case Instructions::f64_div.value():
BINARY_NUMERIC_OPERATION(double, /, double);
case Instructions::f64_min.value():
BINARY_PREFIX_NUMERIC_OPERATION(double, min, double);
case Instructions::f64_max.value():
BINARY_PREFIX_NUMERIC_OPERATION(double, max, double);
case Instructions::f64_copysign.value():
BINARY_PREFIX_NUMERIC_OPERATION(double, copysign, double);
case Instructions::i32_wrap_i64.value():
UNARY_MAP(i64, i32, i32);
case Instructions::i32_trunc_sf32.value():
case Instructions::i32_trunc_uf32.value():
case Instructions::i32_trunc_sf64.value():
case Instructions::i32_trunc_uf64.value():
goto unimplemented;
case Instructions::i64_extend_si32.value():
UNARY_MAP(i32, i64, i64);
case Instructions::i64_extend_ui32.value():
UNARY_MAP(u32, i64, i64);
case Instructions::i64_trunc_sf32.value():
case Instructions::i64_trunc_uf32.value():
case Instructions::i64_trunc_sf64.value():
case Instructions::i64_trunc_uf64.value():
goto unimplemented;
case Instructions::f32_convert_si32.value():
UNARY_MAP(i32, float, float);
case Instructions::f32_convert_ui32.value():
UNARY_MAP(u32, float, float);
case Instructions::f32_convert_si64.value():
UNARY_MAP(i64, float, float);
case Instructions::f32_convert_ui64.value():
UNARY_MAP(u32, float, float);
case Instructions::f32_demote_f64.value():
UNARY_MAP(double, float, float);
case Instructions::f64_convert_si32.value():
UNARY_MAP(i32, double, double);
case Instructions::f64_convert_ui32.value():
UNARY_MAP(u32, double, double);
case Instructions::f64_convert_si64.value():
UNARY_MAP(i64, double, double);
case Instructions::f64_convert_ui64.value():
UNARY_MAP(u64, double, double);
case Instructions::f64_promote_f32.value():
UNARY_MAP(float, double, double);
case Instructions::i32_reinterpret_f32.value():
UNARY_MAP(float, bit_cast<i32>, i32);
case Instructions::i64_reinterpret_f64.value():
UNARY_MAP(double, bit_cast<i64>, i64);
case Instructions::f32_reinterpret_i32.value():
UNARY_MAP(i32, bit_cast<float>, float);
case Instructions::f64_reinterpret_i64.value():
UNARY_MAP(i64, bit_cast<double>, double);
case Instructions::i32_trunc_sat_f32_s.value():
case Instructions::i32_trunc_sat_f32_u.value():
case Instructions::i32_trunc_sat_f64_s.value():
case Instructions::i32_trunc_sat_f64_u.value():
case Instructions::i64_trunc_sat_f32_s.value():
case Instructions::i64_trunc_sat_f32_u.value():
case Instructions::i64_trunc_sat_f64_s.value():
case Instructions::i64_trunc_sat_f64_u.value():
case Instructions::memory_init.value():
case Instructions::data_drop.value():
case Instructions::memory_copy.value():
case Instructions::memory_fill.value():
case Instructions::table_init.value():
case Instructions::elem_drop.value():
case Instructions::table_copy.value():
case Instructions::table_grow.value():
case Instructions::table_size.value():
case Instructions::table_fill.value():
default:
unimplemented:;
dbgln("Instruction '{}' not implemented", instruction_name(instruction.opcode()));
return;
}
}
}