ladybird/Kernel/ACPI/MultiProcessorParser.cpp
Andreas Kling 84b7bc5e14 Kernel: Add convenient ways to map whole BIOS and EBDA into memory
This patch adds a MappedROM abstraction to the Kernel VM subsystem.
It's basically the read-only byte buffer equivalent of a TypedMapping.

We use this in the ACPI and MP table parsers to scan for interesting
stuff in low memory instead of doing a bunch of address arithmetic.
2020-05-22 13:17:38 +02:00

199 lines
8.7 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringView.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/PC/BIOS.h>
#include <Kernel/Interrupts/IOAPIC.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/TypedMapping.h>
//#define MULTIPROCESSOR_DEBUG
namespace Kernel {
static MultiProcessorParser* s_parser;
bool MultiProcessorParser::is_initialized()
{
return s_parser != nullptr;
}
void MultiProcessorParser::initialize()
{
ASSERT(!is_initialized());
s_parser = new MultiProcessorParser;
}
MultiProcessorParser::MultiProcessorParser()
: m_floating_pointer(search_floating_pointer())
{
if (!m_floating_pointer.is_null()) {
klog() << "MultiProcessor: Floating Pointer Structure @ " << PhysicalAddress(m_floating_pointer);
parse_floating_pointer_data();
parse_configuration_table();
} else {
klog() << "MultiProcessor: Can't Locate Floating Pointer Structure, disabled.";
}
}
void MultiProcessorParser::parse_floating_pointer_data()
{
auto floating_pointer = map_typed<MultiProcessor::FloatingPointer>(m_floating_pointer);
m_configuration_table = PhysicalAddress(floating_pointer->physical_address_ptr);
dbg() << "Features " << floating_pointer->feature_info[0] << ", IMCR? " << (floating_pointer->feature_info[0] & (1 << 7));
}
void MultiProcessorParser::parse_configuration_table()
{
auto configuration_table_length = map_typed<MultiProcessor::ConfigurationTableHeader>(m_configuration_table)->length;
auto config_table = map_typed<MultiProcessor::ConfigurationTableHeader>(m_configuration_table, configuration_table_length);
size_t entry_count = config_table->entry_count;
auto* entry = config_table->entries;
while (entry_count > 0) {
#ifdef MULTIPROCESSOR_DEBUG
dbg() << "MultiProcessor: Entry Type " << entry->entry_type << " detected.";
#endif
switch (entry->entry_type) {
case ((u8)MultiProcessor::ConfigurationTableEntryType::Processor):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Processor;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::Bus):
m_bus_entries.append(*(const MultiProcessor::BusEntry*)entry);
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Bus;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::IOAPIC):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IOAPIC;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::IO_Interrupt_Assignment):
m_io_interrupt_assignment_entries.append(*(const MultiProcessor::IOInterruptAssignmentEntry*)entry);
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::IO_Interrupt_Assignment;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::Local_Interrupt_Assignment):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::Local_Interrupt_Assignment;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::SystemAddressSpaceMapping):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::SystemAddressSpaceMapping;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::BusHierarchyDescriptor):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::BusHierarchyDescriptor;
break;
case ((u8)MultiProcessor::ConfigurationTableEntryType::CompatibilityBusAddressSpaceModifier):
entry = (MultiProcessor::EntryHeader*)(u32)entry + (u8)MultiProcessor::ConfigurationTableEntryLength::CompatibilityBusAddressSpaceModifier;
break;
default:
ASSERT_NOT_REACHED();
}
--entry_count;
}
}
PhysicalAddress MultiProcessorParser::search_floating_pointer()
{
auto mp_floating_pointer = search_floating_pointer_in_ebda();
if (!mp_floating_pointer.is_null())
return mp_floating_pointer;
return search_floating_pointer_in_bios_area();
}
PhysicalAddress MultiProcessorParser::search_floating_pointer_in_ebda()
{
klog() << "MultiProcessor: Probing EBDA";
auto ebda = map_ebda();
for (auto* floating_pointer_str = ebda.base(); floating_pointer_str < ebda.end(); floating_pointer_str += 16) {
if (!strncmp("_MP_", (const char*)floating_pointer_str, strlen("_MP_")))
return ebda.paddr_of(floating_pointer_str);
}
return {};
}
PhysicalAddress MultiProcessorParser::search_floating_pointer_in_bios_area()
{
auto bios = map_bios();
for (auto* floating_pointer_str = bios.base(); floating_pointer_str < bios.end(); floating_pointer_str += 16) {
if (!strncmp("_MP_", (const char*)floating_pointer_str, strlen("_MP_")))
return bios.paddr_of(floating_pointer_str);
}
return {};
}
Vector<u8> MultiProcessorParser::get_pci_bus_ids() const
{
Vector<u8> pci_bus_ids;
for (auto& entry : m_bus_entries) {
if (!strncmp("PCI ", entry.bus_type, strlen("PCI ")))
pci_bus_ids.append(entry.bus_id);
}
return pci_bus_ids;
}
MultiProcessorParser& MultiProcessorParser::the()
{
ASSERT(is_initialized());
return *s_parser;
}
Vector<PCIInterruptOverrideMetadata> MultiProcessorParser::get_pci_interrupt_redirections()
{
dbg() << "MultiProcessor: Get PCI IOAPIC redirections";
Vector<PCIInterruptOverrideMetadata> overrides;
auto pci_bus_ids = get_pci_bus_ids();
for (auto& entry : m_io_interrupt_assignment_entries) {
for (auto id : pci_bus_ids) {
if (id == entry.source_bus_id) {
klog() << "Interrupts: Bus " << entry.source_bus_id << ", Polarity " << entry.polarity << ", Trigger Mode " << entry.trigger_mode << ", INT " << entry.source_bus_irq << ", IOAPIC " << entry.destination_ioapic_id << ", IOAPIC INTIN " << entry.destination_ioapic_intin_pin;
overrides.empend(
entry.source_bus_id,
entry.polarity,
entry.trigger_mode,
entry.source_bus_irq,
entry.destination_ioapic_id,
entry.destination_ioapic_intin_pin);
}
}
}
for (auto& override_metadata : overrides) {
klog() << "Interrupts: Bus " << override_metadata.bus() << ", Polarity " << override_metadata.polarity() << ", PCI Device " << override_metadata.pci_device_number() << ", Trigger Mode " << override_metadata.trigger_mode() << ", INT " << override_metadata.pci_interrupt_pin() << ", IOAPIC " << override_metadata.ioapic_id() << ", IOAPIC INTIN " << override_metadata.ioapic_interrupt_pin();
}
return overrides;
}
PCIInterruptOverrideMetadata::PCIInterruptOverrideMetadata(u8 bus_id, u8 polarity, u8 trigger_mode, u8 source_irq, u32 ioapic_id, u16 ioapic_int_pin)
: m_bus_id(bus_id)
, m_polarity(polarity)
, m_trigger_mode(trigger_mode)
, m_pci_interrupt_pin(source_irq & 0b11)
, m_pci_device_number((source_irq >> 2) & 0b11111)
, m_ioapic_id(ioapic_id)
, m_ioapic_interrupt_pin(ioapic_int_pin)
{
}
}