ladybird/Userland/Libraries/LibAudio/WavLoader.cpp
Tim Schumacher 8331d7cd82 LibAudio: Use the proper functions to read WAV samples
Turns out that, if we don't use functions that ensure reading until the
very end of the buffer, we only end up getting the very beginning of
samples and fill the rest with uninitialized data.

While at it, make sure that we read the data that is little endian as a
LittleEndian.
2023-02-27 18:28:12 +01:00

343 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "WavLoader.h"
#include "LoaderError.h"
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <AK/FixedArray.h>
#include <AK/MemoryStream.h>
#include <AK/NumericLimits.h>
#include <AK/Try.h>
#include <LibCore/File.h>
namespace Audio {
static constexpr size_t const maximum_wav_size = 1 * GiB; // FIXME: is there a more appropriate size limit?
WavLoaderPlugin::WavLoaderPlugin(NonnullOwnPtr<SeekableStream> stream)
: LoaderPlugin(move(stream))
{
}
Result<NonnullOwnPtr<WavLoaderPlugin>, LoaderError> WavLoaderPlugin::create(StringView path)
{
auto stream = LOADER_TRY(Core::BufferedFile::create(LOADER_TRY(Core::File::open(path, Core::File::OpenMode::Read))));
auto loader = make<WavLoaderPlugin>(move(stream));
LOADER_TRY(loader->initialize());
return loader;
}
Result<NonnullOwnPtr<WavLoaderPlugin>, LoaderError> WavLoaderPlugin::create(Bytes buffer)
{
auto stream = LOADER_TRY(try_make<FixedMemoryStream>(buffer));
auto loader = make<WavLoaderPlugin>(move(stream));
LOADER_TRY(loader->initialize());
return loader;
}
MaybeLoaderError WavLoaderPlugin::initialize()
{
LOADER_TRY(parse_header());
return {};
}
template<typename SampleReader>
MaybeLoaderError WavLoaderPlugin::read_samples_from_stream(Stream& stream, SampleReader read_sample, FixedArray<Sample>& samples) const
{
switch (m_num_channels) {
case 1:
for (auto& sample : samples)
sample = Sample(LOADER_TRY(read_sample(stream)));
break;
case 2:
for (auto& sample : samples) {
auto left_channel_sample = LOADER_TRY(read_sample(stream));
auto right_channel_sample = LOADER_TRY(read_sample(stream));
sample = Sample(left_channel_sample, right_channel_sample);
}
break;
default:
VERIFY_NOT_REACHED();
}
return {};
}
// There's no i24 type + we need to do the endianness conversion manually anyways.
static ErrorOr<double> read_sample_int24(Stream& stream)
{
i32 sample1 = TRY(stream.read_value<u8>());
i32 sample2 = TRY(stream.read_value<u8>());
i32 sample3 = TRY(stream.read_value<u8>());
i32 value = 0;
value = sample1;
value |= sample2 << 8;
value |= sample3 << 16;
// Sign extend the value, as it can currently not have the correct sign.
value = (value << 8) >> 8;
// Range of value is now -2^23 to 2^23-1 and we can rescale normally.
return static_cast<double>(value) / static_cast<double>((1 << 23) - 1);
}
template<typename T>
static ErrorOr<double> read_sample(Stream& stream)
{
T sample { 0 };
TRY(stream.read_entire_buffer(Bytes { &sample, sizeof(T) }));
// Remap integer samples to normalized floating-point range of -1 to 1.
if constexpr (IsIntegral<T>) {
if constexpr (NumericLimits<T>::is_signed()) {
// Signed integer samples are centered around zero, so this division is enough.
return static_cast<double>(AK::convert_between_host_and_little_endian(sample)) / static_cast<double>(NumericLimits<T>::max());
} else {
// Unsigned integer samples, on the other hand, need to be shifted to center them around zero.
// The first division therefore remaps to the range 0 to 2.
return static_cast<double>(AK::convert_between_host_and_little_endian(sample)) / (static_cast<double>(NumericLimits<T>::max()) / 2.0) - 1.0;
}
} else {
return static_cast<double>(AK::convert_between_host_and_little_endian(sample));
}
}
LoaderSamples WavLoaderPlugin::samples_from_pcm_data(Bytes const& data, size_t samples_to_read) const
{
FixedArray<Sample> samples = LOADER_TRY(FixedArray<Sample>::create(samples_to_read));
FixedMemoryStream stream { data };
switch (m_sample_format) {
case PcmSampleFormat::Uint8:
TRY(read_samples_from_stream(stream, read_sample<u8>, samples));
break;
case PcmSampleFormat::Int16:
TRY(read_samples_from_stream(stream, read_sample<i16>, samples));
break;
case PcmSampleFormat::Int24:
TRY(read_samples_from_stream(stream, read_sample_int24, samples));
break;
case PcmSampleFormat::Float32:
TRY(read_samples_from_stream(stream, read_sample<float>, samples));
break;
case PcmSampleFormat::Float64:
TRY(read_samples_from_stream(stream, read_sample<double>, samples));
break;
default:
VERIFY_NOT_REACHED();
}
return samples;
}
LoaderSamples WavLoaderPlugin::get_more_samples(size_t max_samples_to_read_from_input)
{
auto remaining_samples = m_total_samples - m_loaded_samples;
if (remaining_samples <= 0)
return FixedArray<Sample> {};
// One "sample" contains data from all channels.
// In the Wave spec, this is also called a block.
size_t bytes_per_sample
= m_num_channels * pcm_bits_per_sample(m_sample_format) / 8;
// Might truncate if not evenly divisible by the sample size
auto max_samples_to_read = max_samples_to_read_from_input / bytes_per_sample;
auto samples_to_read = min(max_samples_to_read, remaining_samples);
auto bytes_to_read = samples_to_read * bytes_per_sample;
dbgln_if(AWAVLOADER_DEBUG, "Read {} bytes WAV with num_channels {} sample rate {}, "
"bits per sample {}, sample format {}",
bytes_to_read, m_num_channels, m_sample_rate,
pcm_bits_per_sample(m_sample_format), sample_format_name(m_sample_format));
auto sample_data = LOADER_TRY(ByteBuffer::create_zeroed(bytes_to_read));
LOADER_TRY(m_stream->read_entire_buffer(sample_data.bytes()));
// m_loaded_samples should contain the amount of actually loaded samples
m_loaded_samples += samples_to_read;
return samples_from_pcm_data(sample_data.bytes(), samples_to_read);
}
MaybeLoaderError WavLoaderPlugin::seek(int sample_index)
{
dbgln_if(AWAVLOADER_DEBUG, "seek sample_index {}", sample_index);
if (sample_index < 0 || sample_index >= static_cast<int>(m_total_samples))
return LoaderError { LoaderError::Category::Internal, m_loaded_samples, "Seek outside the sample range" };
size_t sample_offset = m_byte_offset_of_data_samples + static_cast<size_t>(sample_index * m_num_channels * (pcm_bits_per_sample(m_sample_format) / 8));
LOADER_TRY(m_stream->seek(sample_offset, SeekMode::SetPosition));
m_loaded_samples = sample_index;
return {};
}
// Specification reference: http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
MaybeLoaderError WavLoaderPlugin::parse_header()
{
bool ok = true;
size_t bytes_read = 0;
auto read_u8 = [&]() -> ErrorOr<u8, LoaderError> {
u8 value = LOADER_TRY(m_stream->read_value<LittleEndian<u8>>());
bytes_read += 1;
return value;
};
auto read_u16 = [&]() -> ErrorOr<u16, LoaderError> {
u16 value = LOADER_TRY(m_stream->read_value<LittleEndian<u16>>());
bytes_read += 2;
return value;
};
auto read_u32 = [&]() -> ErrorOr<u32, LoaderError> {
u32 value = LOADER_TRY(m_stream->read_value<LittleEndian<u32>>());
bytes_read += 4;
return value;
};
#define CHECK_OK(category, msg) \
do { \
if (!ok) \
return LoaderError { category, DeprecatedString::formatted("Parsing failed: {}", msg) }; \
} while (0)
u32 riff = TRY(read_u32());
ok = ok && riff == 0x46464952; // "RIFF"
CHECK_OK(LoaderError::Category::Format, "RIFF header");
u32 sz = TRY(read_u32());
ok = ok && sz < maximum_wav_size;
CHECK_OK(LoaderError::Category::Format, "File size");
u32 wave = TRY(read_u32());
ok = ok && wave == 0x45564157; // "WAVE"
CHECK_OK(LoaderError::Category::Format, "WAVE header");
u32 fmt_id = TRY(read_u32());
ok = ok && fmt_id == 0x20746D66; // "fmt "
CHECK_OK(LoaderError::Category::Format, "FMT header");
u32 fmt_size = TRY(read_u32());
ok = ok && (fmt_size == 16 || fmt_size == 18 || fmt_size == 40);
CHECK_OK(LoaderError::Category::Format, "FMT size");
u16 audio_format = TRY(read_u16());
CHECK_OK(LoaderError::Category::Format, "Audio format"); // incomplete read check
ok = ok && (audio_format == WAVE_FORMAT_PCM || audio_format == WAVE_FORMAT_IEEE_FLOAT || audio_format == WAVE_FORMAT_EXTENSIBLE);
CHECK_OK(LoaderError::Category::Unimplemented, "Audio format PCM/Float"); // value check
m_num_channels = TRY(read_u16());
ok = ok && (m_num_channels == 1 || m_num_channels == 2);
CHECK_OK(LoaderError::Category::Unimplemented, "Channel count");
m_sample_rate = TRY(read_u32());
CHECK_OK(LoaderError::Category::IO, "Sample rate");
TRY(read_u32());
CHECK_OK(LoaderError::Category::IO, "Data rate");
u16 block_size_bytes = TRY(read_u16());
CHECK_OK(LoaderError::Category::IO, "Block size");
u16 bits_per_sample = TRY(read_u16());
CHECK_OK(LoaderError::Category::IO, "Bits per sample");
if (audio_format == WAVE_FORMAT_EXTENSIBLE) {
ok = ok && (fmt_size == 40);
CHECK_OK(LoaderError::Category::Format, "Extensible fmt size"); // value check
// Discard everything until the GUID.
// We've already read 16 bytes from the stream. The GUID starts in another 8 bytes.
TRY(read_u32());
TRY(read_u32());
CHECK_OK(LoaderError::Category::IO, "Discard until GUID");
// Get the underlying audio format from the first two bytes of GUID
u16 guid_subformat = TRY(read_u16());
ok = ok && (guid_subformat == WAVE_FORMAT_PCM || guid_subformat == WAVE_FORMAT_IEEE_FLOAT);
CHECK_OK(LoaderError::Category::Unimplemented, "GUID SubFormat");
audio_format = guid_subformat;
}
if (audio_format == WAVE_FORMAT_PCM) {
ok = ok && (bits_per_sample == 8 || bits_per_sample == 16 || bits_per_sample == 24);
CHECK_OK(LoaderError::Category::Unimplemented, "Bits per sample (PCM)"); // value check
// We only support 8-24 bit audio right now because other formats are uncommon
if (bits_per_sample == 8) {
m_sample_format = PcmSampleFormat::Uint8;
} else if (bits_per_sample == 16) {
m_sample_format = PcmSampleFormat::Int16;
} else if (bits_per_sample == 24) {
m_sample_format = PcmSampleFormat::Int24;
}
} else if (audio_format == WAVE_FORMAT_IEEE_FLOAT) {
ok = ok && (bits_per_sample == 32 || bits_per_sample == 64);
CHECK_OK(LoaderError::Category::Unimplemented, "Bits per sample (Float)"); // value check
// Again, only the common 32 and 64 bit
if (bits_per_sample == 32) {
m_sample_format = PcmSampleFormat::Float32;
} else if (bits_per_sample == 64) {
m_sample_format = PcmSampleFormat::Float64;
}
}
ok = ok && (block_size_bytes == (m_num_channels * (bits_per_sample / 8)));
CHECK_OK(LoaderError::Category::Format, "Block size sanity check");
dbgln_if(AWAVLOADER_DEBUG, "WAV format {} at {} bit, {} channels, rate {}Hz ",
sample_format_name(m_sample_format), pcm_bits_per_sample(m_sample_format), m_num_channels, m_sample_rate);
// Read chunks until we find DATA
bool found_data = false;
u32 data_size = 0;
u8 search_byte = 0;
while (true) {
search_byte = TRY(read_u8());
CHECK_OK(LoaderError::Category::IO, "Reading byte searching for data");
if (search_byte != 0x64) // D
continue;
search_byte = TRY(read_u8());
CHECK_OK(LoaderError::Category::IO, "Reading next byte searching for data");
if (search_byte != 0x61) // A
continue;
u16 search_remaining = TRY(read_u16());
CHECK_OK(LoaderError::Category::IO, "Reading remaining bytes searching for data");
if (search_remaining != 0x6174) // TA
continue;
data_size = TRY(read_u32());
found_data = true;
break;
}
ok = ok && found_data;
CHECK_OK(LoaderError::Category::Format, "Found no data chunk");
ok = ok && data_size < maximum_wav_size;
CHECK_OK(LoaderError::Category::Format, "Data was too large");
m_total_samples = data_size / block_size_bytes;
dbgln_if(AWAVLOADER_DEBUG, "WAV data size {}, bytes per sample {}, total samples {}",
data_size,
block_size_bytes,
m_total_samples);
m_byte_offset_of_data_samples = bytes_read;
return {};
}
}