
I've chosen the name `AttributeParser` since it parses data from attributes. Rather than duplicate the parsing of numbers and other basic types, let's make use of this existing parsing code for parsing the data for `<line>`, `<polyline>`, etc.
267 lines
9.6 KiB
C++
267 lines
9.6 KiB
C++
/*
|
|
* Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/ExtraMathConstants.h>
|
|
#include <LibGfx/Painter.h>
|
|
#include <LibGfx/Path.h>
|
|
#include <LibWeb/DOM/Document.h>
|
|
#include <LibWeb/DOM/Event.h>
|
|
#include <LibWeb/Layout/SVGGeometryBox.h>
|
|
#include <LibWeb/SVG/SVGPathElement.h>
|
|
|
|
namespace Web::SVG {
|
|
|
|
[[maybe_unused]] static void print_instruction(const PathInstruction& instruction)
|
|
{
|
|
VERIFY(PATH_DEBUG);
|
|
|
|
auto& data = instruction.data;
|
|
|
|
switch (instruction.type) {
|
|
case PathInstructionType::Move:
|
|
dbgln("Move (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbgln(" x={}, y={}", data[i], data[i + 1]);
|
|
break;
|
|
case PathInstructionType::ClosePath:
|
|
dbgln("ClosePath (absolute={})", instruction.absolute);
|
|
break;
|
|
case PathInstructionType::Line:
|
|
dbgln("Line (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbgln(" x={}, y={}", data[i], data[i + 1]);
|
|
break;
|
|
case PathInstructionType::HorizontalLine:
|
|
dbgln("HorizontalLine (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
dbgln(" x={}", data[i]);
|
|
break;
|
|
case PathInstructionType::VerticalLine:
|
|
dbgln("VerticalLine (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
dbgln(" y={}", data[i]);
|
|
break;
|
|
case PathInstructionType::Curve:
|
|
dbgln("Curve (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 6)
|
|
dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
|
|
break;
|
|
case PathInstructionType::SmoothCurve:
|
|
dbgln("SmoothCurve (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 4)
|
|
dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
|
|
break;
|
|
case PathInstructionType::QuadraticBezierCurve:
|
|
dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 4)
|
|
dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
|
|
break;
|
|
case PathInstructionType::SmoothQuadraticBezierCurve:
|
|
dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbgln(" x={}, y={}", data[i], data[i + 1]);
|
|
break;
|
|
case PathInstructionType::EllipticalArc:
|
|
dbgln("EllipticalArc (absolute={})", instruction.absolute);
|
|
for (size_t i = 0; i < data.size(); i += 7)
|
|
dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
|
|
data[i],
|
|
data[i + 1],
|
|
data[i + 2],
|
|
data[i + 3],
|
|
data[i + 4],
|
|
data[i + 5],
|
|
data[i + 6]);
|
|
break;
|
|
case PathInstructionType::Invalid:
|
|
dbgln("Invalid");
|
|
break;
|
|
}
|
|
}
|
|
|
|
SVGPathElement::SVGPathElement(DOM::Document& document, QualifiedName qualified_name)
|
|
: SVGGeometryElement(document, move(qualified_name))
|
|
{
|
|
}
|
|
|
|
void SVGPathElement::parse_attribute(const FlyString& name, const String& value)
|
|
{
|
|
SVGGeometryElement::parse_attribute(name, value);
|
|
|
|
if (name == "d")
|
|
m_instructions = AttributeParser(value).parse_path_data();
|
|
}
|
|
|
|
Gfx::Path& SVGPathElement::get_path()
|
|
{
|
|
if (m_path.has_value())
|
|
return m_path.value();
|
|
|
|
Gfx::Path path;
|
|
PathInstructionType last_instruction = PathInstructionType::Invalid;
|
|
|
|
for (auto& instruction : m_instructions) {
|
|
// If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
|
|
auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last().point();
|
|
|
|
auto& absolute = instruction.absolute;
|
|
auto& data = instruction.data;
|
|
|
|
if constexpr (PATH_DEBUG) {
|
|
print_instruction(instruction);
|
|
}
|
|
|
|
bool clear_last_control_point = true;
|
|
|
|
switch (instruction.type) {
|
|
case PathInstructionType::Move: {
|
|
Gfx::FloatPoint point = { data[0], data[1] };
|
|
if (absolute) {
|
|
path.move_to(point);
|
|
} else {
|
|
path.move_to(point + last_point);
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::ClosePath:
|
|
path.close();
|
|
break;
|
|
case PathInstructionType::Line: {
|
|
Gfx::FloatPoint point = { data[0], data[1] };
|
|
if (absolute) {
|
|
path.line_to(point);
|
|
} else {
|
|
path.line_to(point + last_point);
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::HorizontalLine: {
|
|
if (absolute)
|
|
path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
|
|
else
|
|
path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
|
|
break;
|
|
}
|
|
case PathInstructionType::VerticalLine: {
|
|
if (absolute)
|
|
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
|
|
else
|
|
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
|
|
break;
|
|
}
|
|
case PathInstructionType::EllipticalArc: {
|
|
double rx = data[0];
|
|
double ry = data[1];
|
|
double x_axis_rotation = double { data[2] } * M_DEG2RAD;
|
|
double large_arc_flag = data[3];
|
|
double sweep_flag = data[4];
|
|
|
|
Gfx::FloatPoint next_point;
|
|
|
|
if (absolute)
|
|
next_point = { data[5], data[6] };
|
|
else
|
|
next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
|
|
|
|
path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
|
|
break;
|
|
}
|
|
case PathInstructionType::QuadraticBezierCurve: {
|
|
clear_last_control_point = false;
|
|
|
|
Gfx::FloatPoint through = { data[0], data[1] };
|
|
Gfx::FloatPoint point = { data[2], data[3] };
|
|
|
|
if (absolute) {
|
|
path.quadratic_bezier_curve_to(through, point);
|
|
m_previous_control_point = through;
|
|
} else {
|
|
auto control_point = through + last_point;
|
|
path.quadratic_bezier_curve_to(control_point, point + last_point);
|
|
m_previous_control_point = control_point;
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::SmoothQuadraticBezierCurve: {
|
|
clear_last_control_point = false;
|
|
|
|
if (m_previous_control_point.is_null()
|
|
|| ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
|
|
m_previous_control_point = last_point;
|
|
}
|
|
|
|
auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
|
|
auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
|
|
auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
|
|
|
|
Gfx::FloatPoint end_point = { data[0], data[1] };
|
|
|
|
if (absolute) {
|
|
path.quadratic_bezier_curve_to(control_point, end_point);
|
|
} else {
|
|
path.quadratic_bezier_curve_to(control_point, end_point + last_point);
|
|
}
|
|
|
|
m_previous_control_point = control_point;
|
|
break;
|
|
}
|
|
|
|
case PathInstructionType::Curve: {
|
|
clear_last_control_point = false;
|
|
|
|
Gfx::FloatPoint c1 = { data[0], data[1] };
|
|
Gfx::FloatPoint c2 = { data[2], data[3] };
|
|
Gfx::FloatPoint p2 = { data[4], data[5] };
|
|
if (!absolute) {
|
|
p2 += last_point;
|
|
c1 += last_point;
|
|
c2 += last_point;
|
|
}
|
|
path.cubic_bezier_curve_to(c1, c2, p2);
|
|
|
|
m_previous_control_point = c2;
|
|
break;
|
|
}
|
|
|
|
case PathInstructionType::SmoothCurve: {
|
|
clear_last_control_point = false;
|
|
|
|
if (m_previous_control_point.is_null()
|
|
|| ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
|
|
m_previous_control_point = last_point;
|
|
}
|
|
|
|
auto reflected_previous_control_x = last_point.dx_relative_to(m_previous_control_point);
|
|
auto reflected_previous_control_y = last_point.dy_relative_to(m_previous_control_point);
|
|
Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
|
|
Gfx::FloatPoint c2 = { data[0], data[1] };
|
|
Gfx::FloatPoint p2 = { data[2], data[3] };
|
|
if (!absolute) {
|
|
p2 += last_point;
|
|
c1 += last_point;
|
|
c2 += last_point;
|
|
}
|
|
path.cubic_bezier_curve_to(c1, c2, p2);
|
|
|
|
m_previous_control_point = c2;
|
|
break;
|
|
}
|
|
case PathInstructionType::Invalid:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
if (clear_last_control_point) {
|
|
m_previous_control_point = Gfx::FloatPoint {};
|
|
}
|
|
last_instruction = instruction.type;
|
|
}
|
|
|
|
m_path = path;
|
|
return m_path.value();
|
|
}
|
|
|
|
}
|