ladybird/Userland/Libraries/LibJS/Runtime/AbstractOperations.cpp
Andreas Kling 7a742b17da LibJS: Store ECMAScriptFunctionObject bytecode in an OwnPtr
Using an Optional was extremely wasteful for function objects that don't
even have a bytecode executable.

This allows ECMAScriptFunctionObject to fit in a smaller size class.
2022-01-31 16:19:23 +01:00

1032 lines
46 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/CharacterTypes.h>
#include <AK/Function.h>
#include <AK/Optional.h>
#include <AK/TemporaryChange.h>
#include <AK/Utf16View.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Parser.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/ArgumentsObject.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BoundFunction.h>
#include <LibJS/Runtime/Completion.h>
#include <LibJS/Runtime/DeclarativeEnvironment.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/ErrorTypes.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/FunctionObject.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/ObjectEnvironment.h>
#include <LibJS/Runtime/PropertyDescriptor.h>
#include <LibJS/Runtime/PropertyKey.h>
#include <LibJS/Runtime/ProxyObject.h>
#include <LibJS/Runtime/Reference.h>
namespace JS {
// 7.2.1 RequireObjectCoercible ( argument ), https://tc39.es/ecma262/#sec-requireobjectcoercible
ThrowCompletionOr<Value> require_object_coercible(GlobalObject& global_object, Value value)
{
auto& vm = global_object.vm();
if (value.is_nullish())
return vm.throw_completion<TypeError>(global_object, ErrorType::NotObjectCoercible, value.to_string_without_side_effects());
return value;
}
// 7.3.14 Call ( F, V [ , argumentsList ] ), https://tc39.es/ecma262/#sec-call
ThrowCompletionOr<Value> call_impl(GlobalObject& global_object, Value function, Value this_value, Optional<MarkedValueList> arguments_list)
{
auto& vm = global_object.vm();
// 1. If argumentsList is not present, set argumentsList to a new empty List.
if (!arguments_list.has_value())
arguments_list = MarkedValueList { global_object.heap() };
// 2. If IsCallable(F) is false, throw a TypeError exception.
if (!function.is_function())
return vm.throw_completion<TypeError>(global_object, ErrorType::NotAFunction, function.to_string_without_side_effects());
// 3. Return ? F.[[Call]](V, argumentsList).
return function.as_function().internal_call(this_value, move(*arguments_list));
}
ThrowCompletionOr<Value> call_impl(GlobalObject& global_object, FunctionObject& function, Value this_value, Optional<MarkedValueList> arguments_list)
{
// 1. If argumentsList is not present, set argumentsList to a new empty List.
if (!arguments_list.has_value())
arguments_list = MarkedValueList { global_object.heap() };
// 2. If IsCallable(F) is false, throw a TypeError exception.
// Note: Called with a FunctionObject ref
// 3. Return ? F.[[Call]](V, argumentsList).
return function.internal_call(this_value, move(*arguments_list));
}
// 7.3.15 Construct ( F [ , argumentsList [ , newTarget ] ] ), https://tc39.es/ecma262/#sec-construct
ThrowCompletionOr<Object*> construct_impl(GlobalObject& global_object, FunctionObject& function, Optional<MarkedValueList> arguments_list, FunctionObject* new_target)
{
// 1. If newTarget is not present, set newTarget to F.
if (!new_target)
new_target = &function;
// 2. If argumentsList is not present, set argumentsList to a new empty List.
if (!arguments_list.has_value())
arguments_list = MarkedValueList { global_object.heap() };
// 3. Return ? F.[[Construct]](argumentsList, newTarget).
return function.internal_construct(move(*arguments_list), *new_target);
}
// 7.3.19 LengthOfArrayLike ( obj ), https://tc39.es/ecma262/#sec-lengthofarraylike
ThrowCompletionOr<size_t> length_of_array_like(GlobalObject& global_object, Object const& object)
{
auto& vm = global_object.vm();
auto result = TRY(object.get(vm.names.length));
return result.to_length(global_object);
}
// 7.3.20 CreateListFromArrayLike ( obj [ , elementTypes ] ), https://tc39.es/ecma262/#sec-createlistfromarraylike
ThrowCompletionOr<MarkedValueList> create_list_from_array_like(GlobalObject& global_object, Value value, Function<ThrowCompletionOr<void>(Value)> check_value)
{
auto& vm = global_object.vm();
auto& heap = global_object.heap();
// 1. If elementTypes is not present, set elementTypes to « Undefined, Null, Boolean, String, Symbol, Number, BigInt, Object ».
// 2. If Type(obj) is not Object, throw a TypeError exception.
if (!value.is_object())
return vm.throw_completion<TypeError>(global_object, ErrorType::NotAnObject, value.to_string_without_side_effects());
auto& array_like = value.as_object();
// 3. Let len be ? LengthOfArrayLike(obj).
auto length = TRY(length_of_array_like(global_object, array_like));
// 4. Let list be a new empty List.
auto list = MarkedValueList { heap };
// 5. Let index be 0.
// 6. Repeat, while index < len,
for (size_t i = 0; i < length; ++i) {
// a. Let indexName be ! ToString(𝔽(index)).
auto index_name = PropertyKey { i };
// b. Let next be ? Get(obj, indexName).
auto next = TRY(array_like.get(index_name));
// c. If Type(next) is not an element of elementTypes, throw a TypeError exception.
if (check_value)
TRY(check_value(next));
// d. Append next as the last element of list.
list.append(next);
}
// 7. Return list.
return ThrowCompletionOr(move(list));
}
// 7.3.23 SpeciesConstructor ( O, defaultConstructor ), https://tc39.es/ecma262/#sec-speciesconstructor
ThrowCompletionOr<FunctionObject*> species_constructor(GlobalObject& global_object, Object const& object, FunctionObject& default_constructor)
{
auto& vm = global_object.vm();
// 1. Let C be ? Get(O, "constructor").
auto constructor = TRY(object.get(vm.names.constructor));
// 2. If C is undefined, return defaultConstructor.
if (constructor.is_undefined())
return &default_constructor;
// 3. If Type(C) is not Object, throw a TypeError exception.
if (!constructor.is_object())
return vm.throw_completion<TypeError>(global_object, ErrorType::NotAConstructor, constructor.to_string_without_side_effects());
// 4. Let S be ? Get(C, @@species).
auto species = TRY(constructor.as_object().get(*vm.well_known_symbol_species()));
// 5. If S is either undefined or null, return defaultConstructor.
if (species.is_nullish())
return &default_constructor;
// 6. If IsConstructor(S) is true, return S.
if (species.is_constructor())
return &species.as_function();
// 7. Throw a TypeError exception.
return vm.throw_completion<TypeError>(global_object, ErrorType::NotAConstructor, species.to_string_without_side_effects());
}
// 7.3.25 GetFunctionRealm ( obj ), https://tc39.es/ecma262/#sec-getfunctionrealm
ThrowCompletionOr<Realm*> get_function_realm(GlobalObject& global_object, FunctionObject const& function)
{
auto& vm = global_object.vm();
// 1. Assert: ! IsCallable(obj) is true.
// 2. If obj has a [[Realm]] internal slot, then
if (function.realm()) {
// a. Return obj.[[Realm]].
return function.realm();
}
// 3. If obj is a bound function exotic object, then
if (is<BoundFunction>(function)) {
auto& bound_function = static_cast<BoundFunction const&>(function);
// a. Let target be obj.[[BoundTargetFunction]].
auto& target = bound_function.bound_target_function();
// b. Return ? GetFunctionRealm(target).
return get_function_realm(global_object, target);
}
// 4. If obj is a Proxy exotic object, then
if (is<ProxyObject>(function)) {
auto& proxy = static_cast<ProxyObject const&>(function);
// a. If obj.[[ProxyHandler]] is null, throw a TypeError exception.
if (proxy.is_revoked())
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// b. Let proxyTarget be obj.[[ProxyTarget]].
auto& proxy_target = proxy.target();
// c. Return ? GetFunctionRealm(proxyTarget).
VERIFY(proxy_target.is_function());
return get_function_realm(global_object, static_cast<FunctionObject const&>(proxy_target));
}
// 5. Return the current Realm Record.
return vm.current_realm();
}
// 8.5.2.1 InitializeBoundName ( name, value, environment ), https://tc39.es/ecma262/#sec-initializeboundname
ThrowCompletionOr<void> initialize_bound_name(GlobalObject& global_object, FlyString const& name, Value value, Environment* environment)
{
auto& vm = global_object.vm();
// 1. If environment is not undefined, then
if (environment) {
// a. Perform environment.InitializeBinding(name, value).
MUST(environment->initialize_binding(global_object, name, value));
// b. Return NormalCompletion(undefined).
return {};
}
// 2. Else,
else {
// a. Let lhs be ResolveBinding(name).
// NOTE: Although the spec pretends resolve_binding cannot fail it can just not in this case.
auto lhs = MUST(vm.resolve_binding(name));
// b. Return ? PutValue(lhs, value).
return TRY(lhs.put_value(global_object, value));
}
VERIFY_NOT_REACHED();
}
// 10.1.6.2 IsCompatiblePropertyDescriptor ( Extensible, Desc, Current ), https://tc39.es/ecma262/#sec-iscompatiblepropertydescriptor
bool is_compatible_property_descriptor(bool extensible, PropertyDescriptor const& descriptor, Optional<PropertyDescriptor> const& current)
{
// 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).
return validate_and_apply_property_descriptor(nullptr, {}, extensible, descriptor, current);
}
// 10.1.6.3 ValidateAndApplyPropertyDescriptor ( O, P, extensible, Desc, current ), https://tc39.es/ecma262/#sec-validateandapplypropertydescriptor
bool validate_and_apply_property_descriptor(Object* object, PropertyKey const& property_name, bool extensible, PropertyDescriptor const& descriptor, Optional<PropertyDescriptor> const& current)
{
// 1. Assert: If O is not undefined, then IsPropertyKey(P) is true.
if (object)
VERIFY(property_name.is_valid());
// 2. If current is undefined, then
if (!current.has_value()) {
// a. If extensible is false, return false.
if (!extensible)
return false;
// b. Assert: extensible is true.
// c. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
if (descriptor.is_generic_descriptor() || descriptor.is_data_descriptor()) {
// i. If O is not undefined, create an own data property named P of object O whose [[Value]], [[Writable]],
// [[Enumerable]], and [[Configurable]] attribute values are described by Desc.
// If the value of an attribute field of Desc is absent, the attribute of the newly created property is set
// to its default value.
if (object) {
auto value = descriptor.value.value_or(js_undefined());
object->storage_set(property_name, { value, descriptor.attributes() });
}
}
// d. Else,
else {
// i. Assert: ! IsAccessorDescriptor(Desc) is true.
VERIFY(descriptor.is_accessor_descriptor());
// ii. If O is not undefined, create an own accessor property named P of object O whose [[Get]], [[Set]],
// [[Enumerable]], and [[Configurable]] attribute values are described by Desc.
// If the value of an attribute field of Desc is absent, the attribute of the newly created property is set
// to its default value.
if (object) {
auto accessor = Accessor::create(object->vm(), descriptor.get.value_or(nullptr), descriptor.set.value_or(nullptr));
object->storage_set(property_name, { accessor, descriptor.attributes() });
}
}
// e. Return true.
return true;
}
// 3. If every field in Desc is absent, return true.
if (descriptor.is_empty())
return true;
// 4. If current.[[Configurable]] is false, then
if (!*current->configurable) {
// a. If Desc.[[Configurable]] is present and its value is true, return false.
if (descriptor.configurable.has_value() && *descriptor.configurable)
return false;
// b. If Desc.[[Enumerable]] is present and ! SameValue(Desc.[[Enumerable]], current.[[Enumerable]]) is false, return false.
if (descriptor.enumerable.has_value() && *descriptor.enumerable != *current->enumerable)
return false;
}
// 5. If ! IsGenericDescriptor(Desc) is true, then
if (descriptor.is_generic_descriptor()) {
// a. NOTE: No further validation is required.
}
// 6. Else if ! SameValue(! IsDataDescriptor(current), ! IsDataDescriptor(Desc)) is false, then
else if (current->is_data_descriptor() != descriptor.is_data_descriptor()) {
// a. If current.[[Configurable]] is false, return false.
if (!*current->configurable)
return false;
// b. If IsDataDescriptor(current) is true, then
if (current->is_data_descriptor()) {
// If O is not undefined, convert the property named P of object O from a data property to an accessor property.
// Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and
// set the rest of the property's attributes to their default values.
if (object) {
auto accessor = Accessor::create(object->vm(), nullptr, nullptr);
object->storage_set(property_name, { accessor, current->attributes() });
}
}
// c. Else,
else {
// If O is not undefined, convert the property named P of object O from an accessor property to a data property.
// Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and
// set the rest of the property's attributes to their default values.
if (object) {
auto value = js_undefined();
object->storage_set(property_name, { value, current->attributes() });
}
}
}
// 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
else if (current->is_data_descriptor() && descriptor.is_data_descriptor()) {
// a. If current.[[Configurable]] is false and current.[[Writable]] is false, then
if (!*current->configurable && !*current->writable) {
// i. If Desc.[[Writable]] is present and Desc.[[Writable]] is true, return false.
if (descriptor.writable.has_value() && *descriptor.writable)
return false;
// ii. If Desc.[[Value]] is present and SameValue(Desc.[[Value]], current.[[Value]]) is false, return false.
if (descriptor.value.has_value() && !same_value(*descriptor.value, *current->value))
return false;
// iii. Return true.
return true;
}
}
// 8. Else,
else {
// a. Assert: ! IsAccessorDescriptor(current) and ! IsAccessorDescriptor(Desc) are both true.
VERIFY(current->is_accessor_descriptor());
VERIFY(descriptor.is_accessor_descriptor());
// b. If current.[[Configurable]] is false, then
if (!*current->configurable) {
// i. If Desc.[[Set]] is present and SameValue(Desc.[[Set]], current.[[Set]]) is false, return false.
if (descriptor.set.has_value() && *descriptor.set != *current->set)
return false;
// ii. If Desc.[[Get]] is present and SameValue(Desc.[[Get]], current.[[Get]]) is false, return false.
if (descriptor.get.has_value() && *descriptor.get != *current->get)
return false;
// iii. Return true.
return true;
}
}
// 9. If O is not undefined, then
if (object) {
// a. For each field of Desc that is present, set the corresponding attribute of the property named P of object O to the value of the field.
Value value;
if (descriptor.is_accessor_descriptor() || (current->is_accessor_descriptor() && !descriptor.is_data_descriptor())) {
auto* getter = descriptor.get.value_or(current->get.value_or(nullptr));
auto* setter = descriptor.set.value_or(current->set.value_or(nullptr));
value = Accessor::create(object->vm(), getter, setter);
} else {
value = descriptor.value.value_or(current->value.value_or({}));
}
PropertyAttributes attributes;
attributes.set_writable(descriptor.writable.value_or(current->writable.value_or(false)));
attributes.set_enumerable(descriptor.enumerable.value_or(current->enumerable.value_or(false)));
attributes.set_configurable(descriptor.configurable.value_or(current->configurable.value_or(false)));
object->storage_set(property_name, { value, attributes });
}
// 10. Return true.
return true;
}
// 10.1.14 GetPrototypeFromConstructor ( constructor, intrinsicDefaultProto ), https://tc39.es/ecma262/#sec-getprototypefromconstructor
ThrowCompletionOr<Object*> get_prototype_from_constructor(GlobalObject& global_object, FunctionObject const& constructor, Object* (GlobalObject::*intrinsic_default_prototype)())
{
auto& vm = global_object.vm();
// 1. Assert: intrinsicDefaultProto is this specification's name of an intrinsic object. The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
// 2. Let proto be ? Get(constructor, "prototype").
auto prototype = TRY(constructor.get(vm.names.prototype));
// 3. If Type(proto) is not Object, then
if (!prototype.is_object()) {
// a. Let realm be ? GetFunctionRealm(constructor).
auto* realm = TRY(get_function_realm(global_object, constructor));
// b. Set proto to realm's intrinsic object named intrinsicDefaultProto.
prototype = (realm->global_object().*intrinsic_default_prototype)();
}
// 4. Return proto.
return &prototype.as_object();
}
// 9.1.2.2 NewDeclarativeEnvironment ( E ), https://tc39.es/ecma262/#sec-newdeclarativeenvironment
DeclarativeEnvironment* new_declarative_environment(Environment& environment)
{
return environment.heap().allocate_without_global_object<DeclarativeEnvironment>(&environment);
}
// 9.1.2.3 NewObjectEnvironment ( O, W, E ), https://tc39.es/ecma262/#sec-newobjectenvironment
ObjectEnvironment* new_object_environment(Object& object, bool is_with_environment, Environment* environment)
{
auto& heap = object.heap();
return heap.allocate_without_global_object<ObjectEnvironment>(object, is_with_environment ? ObjectEnvironment::IsWithEnvironment::Yes : ObjectEnvironment::IsWithEnvironment::No, environment);
}
// 9.1.2.4 NewFunctionEnvironment ( F, newTarget ), https://tc39.es/ecma262/#sec-newfunctionenvironment
FunctionEnvironment* new_function_environment(ECMAScriptFunctionObject& function, Object* new_target)
{
auto& heap = function.heap();
// 1. Let env be a new function Environment Record containing no bindings.
auto* env = heap.allocate_without_global_object<FunctionEnvironment>(function.environment());
// 2. Set env.[[FunctionObject]] to F.
env->set_function_object(function);
// 3. If F.[[ThisMode]] is lexical, set env.[[ThisBindingStatus]] to lexical.
if (function.this_mode() == ECMAScriptFunctionObject::ThisMode::Lexical)
env->set_this_binding_status(FunctionEnvironment::ThisBindingStatus::Lexical);
// 4. Else, set env.[[ThisBindingStatus]] to uninitialized.
else
env->set_this_binding_status(FunctionEnvironment::ThisBindingStatus::Uninitialized);
// 5. Set env.[[NewTarget]] to newTarget.
env->set_new_target(new_target ?: js_undefined());
// 6. Set env.[[OuterEnv]] to F.[[Environment]].
// NOTE: Done in step 1 via the FunctionEnvironment constructor.
// 7. Return env.
return env;
}
// 9.2.1.1 NewPrivateEnvironment ( outerPrivEnv ), https://tc39.es/ecma262/#sec-newprivateenvironment
PrivateEnvironment* new_private_environment(VM& vm, PrivateEnvironment* outer)
{
// 1. Let names be a new empty List.
// 2. Return the PrivateEnvironment Record { [[OuterPrivateEnvironment]]: outerPrivEnv, [[Names]]: names }.
return vm.heap().allocate_without_global_object<PrivateEnvironment>(outer);
}
// 9.4.3 GetThisEnvironment ( ), https://tc39.es/ecma262/#sec-getthisenvironment
Environment& get_this_environment(VM& vm)
{
for (auto* env = vm.lexical_environment(); env; env = env->outer_environment()) {
if (env->has_this_binding())
return *env;
}
VERIFY_NOT_REACHED();
}
// 13.3.7.2 GetSuperConstructor ( ), https://tc39.es/ecma262/#sec-getsuperconstructor
Object* get_super_constructor(VM& vm)
{
// 1. Let envRec be GetThisEnvironment().
auto& env = get_this_environment(vm);
// 2. Assert: envRec is a function Environment Record.
// 3. Let activeFunction be envRec.[[FunctionObject]].
// 4. Assert: activeFunction is an ECMAScript function object.
auto& active_function = verify_cast<FunctionEnvironment>(env).function_object();
// 5. Let superConstructor be ! activeFunction.[[GetPrototypeOf]]().
auto* super_constructor = MUST(active_function.internal_get_prototype_of());
// 6. Return superConstructor.
return super_constructor;
}
// 13.3.7.3 MakeSuperPropertyReference ( actualThis, propertyKey, strict ), https://tc39.es/ecma262/#sec-makesuperpropertyreference
ThrowCompletionOr<Reference> make_super_property_reference(GlobalObject& global_object, Value actual_this, PropertyKey const& property_key, bool strict)
{
auto& vm = global_object.vm();
// 1. Let env be GetThisEnvironment().
auto& env = verify_cast<FunctionEnvironment>(get_this_environment(vm));
// 2. Assert: env.HasSuperBinding() is true.
VERIFY(env.has_super_binding());
// 3. Let baseValue be ? env.GetSuperBase().
auto base_value = TRY(env.get_super_base());
// 4. Let bv be ? RequireObjectCoercible(baseValue).
auto bv = TRY(require_object_coercible(global_object, base_value));
// 5. Return the Reference Record { [[Base]]: bv, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }.
// 6. NOTE: This returns a Super Reference Record.
return Reference { bv, property_key, actual_this, strict };
}
// 19.2.1.1 PerformEval ( x, callerRealm, strictCaller, direct ), https://tc39.es/ecma262/#sec-performeval
ThrowCompletionOr<Value> perform_eval(Value x, GlobalObject& caller_realm, CallerMode strict_caller, EvalMode direct)
{
VERIFY(direct == EvalMode::Direct || strict_caller == CallerMode::NonStrict);
if (!x.is_string())
return x;
auto& vm = caller_realm.vm();
auto& eval_realm = vm.running_execution_context().realm;
auto& code_string = x.as_string();
Parser parser { Lexer { code_string.string() } };
auto program = parser.parse_program(strict_caller == CallerMode::Strict);
if (parser.has_errors()) {
auto& error = parser.errors()[0];
return vm.throw_completion<SyntaxError>(caller_realm, error.to_string());
}
auto strict_eval = strict_caller == CallerMode::Strict;
if (program->is_strict_mode())
strict_eval = true;
auto& running_context = vm.running_execution_context();
Environment* lexical_environment;
Environment* variable_environment;
PrivateEnvironment* private_environment;
if (direct == EvalMode::Direct) {
lexical_environment = new_declarative_environment(*running_context.lexical_environment);
variable_environment = running_context.variable_environment;
private_environment = running_context.private_environment;
} else {
lexical_environment = new_declarative_environment(eval_realm->global_environment());
variable_environment = &eval_realm->global_environment();
private_environment = nullptr;
}
if (strict_eval)
variable_environment = lexical_environment;
if (direct == EvalMode::Direct && !strict_eval) {
// NOTE: Non-strict direct eval() forces us to deoptimize variable accesses.
// Mark the variable environment chain as screwed since we will not be able
// to rely on cached environment coordinates from this point on.
variable_environment->set_permanently_screwed_by_eval();
}
// 18. If runningContext is not already suspended, suspend runningContext.
// FIXME: We don't have this concept yet.
ExecutionContext eval_context(vm.heap());
eval_context.realm = eval_realm;
eval_context.variable_environment = variable_environment;
eval_context.lexical_environment = lexical_environment;
eval_context.private_environment = private_environment;
TRY(vm.push_execution_context(eval_context, eval_realm->global_object()));
ScopeGuard pop_guard = [&] {
vm.pop_execution_context();
};
TRY(eval_declaration_instantiation(vm, eval_realm->global_object(), program, variable_environment, lexical_environment, private_environment, strict_eval));
TemporaryChange scope_change_strict(vm.running_execution_context().is_strict_mode, strict_eval);
Optional<Value> eval_result;
if (auto* bytecode_interpreter = Bytecode::Interpreter::current()) {
auto executable = JS::Bytecode::Generator::generate(program);
executable->name = "eval"sv;
if (JS::Bytecode::g_dump_bytecode)
executable->dump();
eval_result = TRY(bytecode_interpreter->run(*executable));
// Turn potentially empty JS::Value from the bytecode interpreter into an empty Optional
if (eval_result.has_value() && eval_result->is_empty())
eval_result = {};
} else {
auto& ast_interpreter = vm.interpreter();
eval_result = TRY(program->execute(ast_interpreter, caller_realm));
}
return eval_result.value_or(js_undefined());
}
// 19.2.1.3 EvalDeclarationInstantiation ( body, varEnv, lexEnv, privateEnv, strict ), https://tc39.es/ecma262/#sec-evaldeclarationinstantiation
ThrowCompletionOr<void> eval_declaration_instantiation(VM& vm, GlobalObject& global_object, Program const& program, Environment* variable_environment, Environment* lexical_environment, PrivateEnvironment* private_environment, bool strict)
{
// FIXME: I'm not sure if the global object is correct here. And this is quite a crucial spot!
GlobalEnvironment* global_var_environment = variable_environment->is_global_environment() ? static_cast<GlobalEnvironment*>(variable_environment) : nullptr;
if (!strict) {
if (global_var_environment) {
program.for_each_var_declared_name([&](auto const& name) {
if (global_var_environment->has_lexical_declaration(name)) {
vm.throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
auto* this_environment = lexical_environment;
while (this_environment != variable_environment) {
if (!is<ObjectEnvironment>(*this_environment)) {
program.for_each_var_declared_name([&](auto const& name) {
if (MUST(this_environment->has_binding(name))) {
vm.throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
return IterationDecision::Break;
}
// FIXME: NOTE: Annex B.3.4 defines alternate semantics for the above step.
// In particular it only throw the syntax error if it is not an environment from a catchclause.
return IterationDecision::Continue;
});
if (auto* exception = vm.exception())
return throw_completion(exception->value());
}
this_environment = this_environment->outer_environment();
VERIFY(this_environment);
}
}
// FIXME: Add Private identifiers check here.
HashTable<FlyString> declared_function_names;
Vector<FunctionDeclaration const&> functions_to_initialize;
program.for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
return IterationDecision::Continue;
if (global_var_environment) {
auto function_definable_or_error = global_var_environment->can_declare_global_function(function.name());
if (function_definable_or_error.is_error())
return IterationDecision::Break;
auto function_definable = function_definable_or_error.release_value();
if (!function_definable) {
vm.throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalFunction, function.name());
return IterationDecision::Break;
}
}
functions_to_initialize.append(function);
return IterationDecision::Continue;
});
if (auto* exception = vm.exception())
return throw_completion(exception->value());
if (!strict) {
// The spec here uses 'declaredVarNames' but that has not been declared yet.
HashTable<FlyString> hoisted_functions;
program.for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
auto& function_name = function_declaration.name();
auto* this_environment = lexical_environment;
while (this_environment != variable_environment) {
if (!is<ObjectEnvironment>(*this_environment) && MUST(this_environment->has_binding(function_name)))
return IterationDecision::Continue;
this_environment = this_environment->outer_environment();
VERIFY(this_environment);
}
if (global_var_environment) {
if (global_var_environment->has_lexical_declaration(function_name))
return IterationDecision::Continue;
auto var_definable_or_error = global_var_environment->can_declare_global_var(function_name);
if (var_definable_or_error.is_error())
return IterationDecision::Break;
auto var_definable = var_definable_or_error.release_value();
if (!var_definable)
return IterationDecision::Continue;
}
if (!declared_function_names.contains(function_name) && !hoisted_functions.contains(function_name)) {
if (global_var_environment) {
auto result = global_var_environment->create_global_var_binding(function_name, true);
if (result.is_error())
return IterationDecision::Break;
} else {
if (!MUST(variable_environment->has_binding(function_name))) {
MUST(variable_environment->create_mutable_binding(global_object, function_name, true));
MUST(variable_environment->initialize_binding(global_object, function_name, js_undefined()));
}
}
hoisted_functions.set(function_name);
}
function_declaration.set_should_do_additional_annexB_steps();
return IterationDecision::Continue;
});
if (auto* exception = vm.exception())
return throw_completion(exception->value());
}
HashTable<FlyString> declared_var_names;
program.for_each_var_scoped_variable_declaration([&](VariableDeclaration const& declaration) {
declaration.for_each_bound_name([&](auto const& name) {
if (!declared_function_names.contains(name)) {
if (global_var_environment) {
auto variable_definable_or_error = global_var_environment->can_declare_global_var(name);
if (variable_definable_or_error.is_error())
return IterationDecision::Break;
auto variable_definable = variable_definable_or_error.release_value();
if (!variable_definable) {
vm.throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalVariable, name);
return IterationDecision::Break;
}
}
declared_var_names.set(name);
}
return IterationDecision::Continue;
});
if (vm.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// 14. NOTE: No abnormal terminations occur after this algorithm step unless varEnv is a global Environment Record and the global object is a Proxy exotic object.
program.for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
declaration.for_each_bound_name([&](auto const& name) {
if (declaration.is_constant_declaration())
(void)lexical_environment->create_immutable_binding(global_object, name, true);
else
(void)lexical_environment->create_mutable_binding(global_object, name, false);
if (vm.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (vm.exception())
return IterationDecision::Break;
return IterationDecision::Continue;
});
if (auto* exception = vm.exception())
return throw_completion(exception->value());
for (auto& declaration : functions_to_initialize) {
auto* function = ECMAScriptFunctionObject::create(global_object, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), lexical_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object());
if (global_var_environment) {
TRY(global_var_environment->create_global_function_binding(declaration.name(), function, true));
} else {
auto binding_exists = MUST(variable_environment->has_binding(declaration.name()));
if (!binding_exists) {
TRY(variable_environment->create_mutable_binding(global_object, declaration.name(), true));
TRY(variable_environment->initialize_binding(global_object, declaration.name(), function));
} else {
TRY(variable_environment->set_mutable_binding(global_object, declaration.name(), function, false));
}
}
}
for (auto& var_name : declared_var_names) {
if (global_var_environment) {
TRY(global_var_environment->create_global_var_binding(var_name, true));
} else {
auto binding_exists = MUST(variable_environment->has_binding(var_name));
if (!binding_exists) {
TRY(variable_environment->create_mutable_binding(global_object, var_name, true));
TRY(variable_environment->initialize_binding(global_object, var_name, js_undefined()));
}
}
}
return {};
}
// 10.4.4.6 CreateUnmappedArgumentsObject ( argumentsList ), https://tc39.es/ecma262/#sec-createunmappedargumentsobject
Object* create_unmapped_arguments_object(GlobalObject& global_object, Span<Value> arguments)
{
auto& vm = global_object.vm();
// 1. Let len be the number of elements in argumentsList.
auto length = arguments.size();
// 2. Let obj be ! OrdinaryObjectCreate(%Object.prototype%, « [[ParameterMap]] »).
// 3. Set obj.[[ParameterMap]] to undefined.
auto* object = Object::create(global_object, global_object.object_prototype());
object->set_has_parameter_map();
// 4. Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: 𝔽(len), [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
MUST(object->define_property_or_throw(vm.names.length, { .value = Value(length), .writable = true, .enumerable = false, .configurable = true }));
// 5. Let index be 0.
// 6. Repeat, while index < len,
for (size_t index = 0; index < length; ++index) {
// a. Let val be argumentsList[index].
auto value = arguments[index];
// b. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)), val).
MUST(object->create_data_property_or_throw(index, value));
// c. Set index to index + 1.
}
// 7. Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: %Array.prototype.values%, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
auto* array_prototype_values = global_object.array_prototype_values_function();
MUST(object->define_property_or_throw(*vm.well_known_symbol_iterator(), { .value = array_prototype_values, .writable = true, .enumerable = false, .configurable = true }));
// 8. Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Get]]: %ThrowTypeError%, [[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false }).
auto* throw_type_error = global_object.throw_type_error_function();
MUST(object->define_property_or_throw(vm.names.callee, { .get = throw_type_error, .set = throw_type_error, .enumerable = false, .configurable = false }));
// 9. Return obj.
return object;
}
// 10.4.4.7 CreateMappedArgumentsObject ( func, formals, argumentsList, env ), https://tc39.es/ecma262/#sec-createmappedargumentsobject
Object* create_mapped_arguments_object(GlobalObject& global_object, FunctionObject& function, Vector<FunctionNode::Parameter> const& formals, Span<Value> arguments, Environment& environment)
{
auto& vm = global_object.vm();
// 1. Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain duplicate identifiers.
// 2. Let len be the number of elements in argumentsList.
VERIFY(arguments.size() <= NumericLimits<i32>::max());
i32 length = static_cast<i32>(arguments.size());
// 3. Let obj be ! MakeBasicObject(« [[Prototype]], [[Extensible]], [[ParameterMap]] »).
// 4. Set obj.[[GetOwnProperty]] as specified in 10.4.4.1.
// 5. Set obj.[[DefineOwnProperty]] as specified in 10.4.4.2.
// 6. Set obj.[[Get]] as specified in 10.4.4.3.
// 7. Set obj.[[Set]] as specified in 10.4.4.4.
// 8. Set obj.[[Delete]] as specified in 10.4.4.5.
// 9. Set obj.[[Prototype]] to %Object.prototype%.
auto* object = vm.heap().allocate<ArgumentsObject>(global_object, global_object, environment);
VERIFY(!vm.exception());
// 14. Let index be 0.
// 15. Repeat, while index < len,
for (i32 index = 0; index < length; ++index) {
// a. Let val be argumentsList[index].
auto value = arguments[index];
// b. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)), val).
MUST(object->create_data_property_or_throw(index, value));
// c. Set index to index + 1.
}
// 16. Perform ! DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: 𝔽(len), [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
MUST(object->define_property_or_throw(vm.names.length, { .value = Value(length), .writable = true, .enumerable = false, .configurable = true }));
// 17. Let mappedNames be a new empty List.
HashTable<FlyString> mapped_names;
// 18. Set index to numberOfParameters - 1.
// 19. Repeat, while index ≥ 0,
VERIFY(formals.size() <= NumericLimits<i32>::max());
for (i32 index = static_cast<i32>(formals.size()) - 1; index >= 0; --index) {
// a. Let name be parameterNames[index].
auto const& name = formals[index].binding.get<FlyString>();
// b. If name is not an element of mappedNames, then
if (mapped_names.contains(name))
continue;
// i. Add name as an element of the list mappedNames.
mapped_names.set(name);
// ii. If index < len, then
if (index < length) {
// 1. Let g be MakeArgGetter(name, env).
// 2. Let p be MakeArgSetter(name, env).
// 3. Perform map.[[DefineOwnProperty]](! ToString(𝔽(index)), PropertyDescriptor { [[Set]]: p, [[Get]]: g, [[Enumerable]]: false, [[Configurable]]: true }).
object->parameter_map().define_native_accessor(
PropertyKey { index },
[&environment, name](VM&, GlobalObject& global_object_getter) -> JS::ThrowCompletionOr<Value> {
return MUST(environment.get_binding_value(global_object_getter, name, false));
},
[&environment, name](VM& vm, GlobalObject& global_object_setter) {
MUST(environment.set_mutable_binding(global_object_setter, name, vm.argument(0), false));
return js_undefined();
},
Attribute::Configurable);
}
}
// 20. Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: %Array.prototype.values%, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
auto* array_prototype_values = global_object.array_prototype_values_function();
MUST(object->define_property_or_throw(*vm.well_known_symbol_iterator(), { .value = array_prototype_values, .writable = true, .enumerable = false, .configurable = true }));
// 21. Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
MUST(object->define_property_or_throw(vm.names.callee, { .value = &function, .writable = true, .enumerable = false, .configurable = true }));
// 22. Return obj.
return object;
}
// 7.1.21 CanonicalNumericIndexString ( argument ), https://tc39.es/ecma262/#sec-canonicalnumericindexstring
Value canonical_numeric_index_string(GlobalObject& global_object, PropertyKey const& property_name)
{
// NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that has already been
// converted successfully into a canonical numeric index.
VERIFY(property_name.is_string() || property_name.is_number());
if (property_name.is_number())
return Value(property_name.as_number());
// 1. Assert: Type(argument) is String.
auto argument = Value(js_string(global_object.vm(), property_name.as_string()));
// 2. If argument is "-0", return -0𝔽.
if (argument.as_string().string() == "-0")
return Value(-0.0);
// 3. Let n be ! ToNumber(argument).
auto n = MUST(argument.to_number(global_object));
// 4. If SameValue(! ToString(n), argument) is false, return undefined.
if (!same_value(MUST(n.to_primitive_string(global_object)), argument))
return js_undefined();
// 5. Return n.
return n;
}
// 22.1.3.17.1 GetSubstitution ( matched, str, position, captures, namedCaptures, replacement ), https://tc39.es/ecma262/#sec-getsubstitution
ThrowCompletionOr<String> get_substitution(GlobalObject& global_object, Utf16View const& matched, Utf16View const& str, size_t position, Span<Value> captures, Value named_captures, Value replacement)
{
auto replace_string = TRY(replacement.to_utf16_string(global_object));
auto replace_view = replace_string.view();
StringBuilder result;
for (size_t i = 0; i < replace_view.length_in_code_units(); ++i) {
u16 curr = replace_view.code_unit_at(i);
if ((curr != '$') || (i + 1 >= replace_view.length_in_code_units())) {
result.append(curr);
continue;
}
u16 next = replace_view.code_unit_at(i + 1);
if (next == '$') {
result.append('$');
++i;
} else if (next == '&') {
result.append(matched);
++i;
} else if (next == '`') {
auto substring = str.substring_view(0, position);
result.append(substring);
++i;
} else if (next == '\'') {
auto tail_pos = position + matched.length_in_code_units();
if (tail_pos < str.length_in_code_units()) {
auto substring = str.substring_view(tail_pos);
result.append(substring);
}
++i;
} else if (is_ascii_digit(next)) {
bool is_two_digits = (i + 2 < replace_view.length_in_code_units()) && is_ascii_digit(replace_view.code_unit_at(i + 2));
auto capture_postition_string = replace_view.substring_view(i + 1, is_two_digits ? 2 : 1).to_utf8();
auto capture_position = capture_postition_string.to_uint();
if (capture_position.has_value() && (*capture_position > 0) && (*capture_position <= captures.size())) {
auto& value = captures[*capture_position - 1];
if (!value.is_undefined()) {
auto value_string = TRY(value.to_string(global_object));
result.append(value_string);
}
i += is_two_digits ? 2 : 1;
} else {
result.append(curr);
}
} else if (next == '<') {
auto start_position = i + 2;
Optional<size_t> end_position;
for (size_t j = start_position; j < replace_view.length_in_code_units(); ++j) {
if (replace_view.code_unit_at(j) == '>') {
end_position = j;
break;
}
}
if (named_captures.is_undefined() || !end_position.has_value()) {
result.append(curr);
} else {
auto group_name_view = replace_view.substring_view(start_position, *end_position - start_position);
auto group_name = group_name_view.to_utf8(Utf16View::AllowInvalidCodeUnits::Yes);
auto capture = TRY(named_captures.as_object().get(group_name));
if (!capture.is_undefined()) {
auto capture_string = TRY(capture.to_string(global_object));
result.append(capture_string);
}
i = *end_position;
}
} else {
result.append(curr);
}
}
return result.build();
}
}