ladybird/Userland/Libraries/LibJS/Bytecode/Interpreter.cpp
Timothy Flynn 77d7f715e3 LibJS+CI: Remove bytecode optimization passes for now
These passes have not been shown to actually optimize any JS, and tests
have become very flaky with optimizations enabled. Until some measurable
benefit is shown, remove the optimization passes to reduce overhead of
maintaining bytecode operations and to reduce CI churn. The framework
for optimizations will live on in git history, and can be restored once
proven useful.
2023-07-21 19:47:36 +03:30

437 lines
17 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Realm.h>
namespace JS::Bytecode {
static bool s_bytecode_interpreter_enabled = false;
bool Interpreter::enabled()
{
return s_bytecode_interpreter_enabled;
}
void Interpreter::set_enabled(bool enabled)
{
s_bytecode_interpreter_enabled = enabled;
}
bool g_dump_bytecode = false;
Interpreter::Interpreter(VM& vm)
: m_vm(vm)
{
}
Interpreter::~Interpreter()
{
}
void Interpreter::visit_edges(Cell::Visitor& visitor)
{
if (m_return_value.has_value())
visitor.visit(*m_return_value);
if (m_saved_return_value.has_value())
visitor.visit(*m_saved_return_value);
if (m_saved_exception.has_value())
visitor.visit(*m_saved_exception);
for (auto& frame : m_call_frames) {
frame.visit([&](auto& value) { value->visit_edges(visitor); });
}
}
// 16.1.6 ScriptEvaluation ( scriptRecord ), https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
ThrowCompletionOr<Value> Interpreter::run(Script& script_record, JS::GCPtr<Environment> lexical_environment_override)
{
auto& vm = this->vm();
// 1. Let globalEnv be scriptRecord.[[Realm]].[[GlobalEnv]].
auto& global_environment = script_record.realm().global_environment();
// 2. Let scriptContext be a new ECMAScript code execution context.
ExecutionContext script_context(vm.heap());
// 3. Set the Function of scriptContext to null.
// NOTE: This was done during execution context construction.
// 4. Set the Realm of scriptContext to scriptRecord.[[Realm]].
script_context.realm = &script_record.realm();
// 5. Set the ScriptOrModule of scriptContext to scriptRecord.
script_context.script_or_module = NonnullGCPtr<Script>(script_record);
// 6. Set the VariableEnvironment of scriptContext to globalEnv.
script_context.variable_environment = &global_environment;
// 7. Set the LexicalEnvironment of scriptContext to globalEnv.
script_context.lexical_environment = &global_environment;
// Non-standard: Override the lexical environment if requested.
if (lexical_environment_override)
script_context.lexical_environment = lexical_environment_override;
// 8. Set the PrivateEnvironment of scriptContext to null.
// NOTE: This isn't in the spec, but we require it.
script_context.is_strict_mode = script_record.parse_node().is_strict_mode();
// FIXME: 9. Suspend the currently running execution context.
// 10. Push scriptContext onto the execution context stack; scriptContext is now the running execution context.
TRY(vm.push_execution_context(script_context, {}));
// 11. Let script be scriptRecord.[[ECMAScriptCode]].
auto& script = script_record.parse_node();
// 12. Let result be Completion(GlobalDeclarationInstantiation(script, globalEnv)).
auto instantiation_result = script.global_declaration_instantiation(vm, global_environment);
Completion result = instantiation_result.is_throw_completion() ? instantiation_result.throw_completion() : normal_completion({});
// 13. If result.[[Type]] is normal, then
if (result.type() == Completion::Type::Normal) {
auto executable_result = JS::Bytecode::Generator::generate(script);
if (executable_result.is_error()) {
if (auto error_string = executable_result.error().to_string(); error_string.is_error())
result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory));
else if (error_string = String::formatted("TODO({})", error_string.value()); error_string.is_error())
result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory));
else
result = JS::throw_completion(JS::InternalError::create(realm(), error_string.release_value()));
} else {
auto executable = executable_result.release_value();
if (g_dump_bytecode)
executable->dump();
// a. Set result to the result of evaluating script.
auto result_or_error = run_and_return_frame(script_record.realm(), *executable, nullptr);
if (result_or_error.value.is_error())
result = result_or_error.value.release_error();
else
result = result_or_error.frame->registers[0];
}
}
// 14. If result.[[Type]] is normal and result.[[Value]] is empty, then
if (result.type() == Completion::Type::Normal && !result.value().has_value()) {
// a. Set result to NormalCompletion(undefined).
result = normal_completion(js_undefined());
}
// FIXME: 15. Suspend scriptContext and remove it from the execution context stack.
vm.pop_execution_context();
// 16. Assert: The execution context stack is not empty.
VERIFY(!vm.execution_context_stack().is_empty());
// FIXME: 17. Resume the context that is now on the top of the execution context stack as the running execution context.
// At this point we may have already run any queued promise jobs via on_call_stack_emptied,
// in which case this is a no-op.
// FIXME: These three should be moved out of Interpreter::run and give the host an option to run these, as it's up to the host when these get run.
// https://tc39.es/ecma262/#sec-jobs for jobs and https://tc39.es/ecma262/#_ref_3508 for ClearKeptObjects
// finish_execution_generation is particularly an issue for LibWeb, as the HTML spec wants to run it specifically after performing a microtask checkpoint.
// The promise and registry cleanup queues don't cause LibWeb an issue, as LibWeb overrides the hooks that push onto these queues.
vm.run_queued_promise_jobs();
vm.run_queued_finalization_registry_cleanup_jobs();
vm.finish_execution_generation();
// 18. Return ? result.
if (result.is_abrupt()) {
VERIFY(result.type() == Completion::Type::Throw);
return result.release_error();
}
VERIFY(result.value().has_value());
return *result.value();
}
ThrowCompletionOr<Value> Interpreter::run(SourceTextModule& module)
{
// FIXME: This is not a entry point as defined in the spec, but is convenient.
// To avoid work we use link_and_eval_module however that can already be
// dangerous if the vm loaded other modules.
auto& vm = this->vm();
TRY(vm.link_and_eval_module(Badge<Bytecode::Interpreter> {}, module));
vm.run_queued_promise_jobs();
vm.run_queued_finalization_registry_cleanup_jobs();
return js_undefined();
}
Interpreter::ValueAndFrame Interpreter::run_and_return_frame(Realm& realm, Executable& executable, BasicBlock const* entry_point, CallFrame* in_frame)
{
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable);
TemporaryChange restore_executable { m_current_executable, &executable };
TemporaryChange restore_saved_jump { m_scheduled_jump, static_cast<BasicBlock const*>(nullptr) };
TemporaryChange restore_saved_exception { m_saved_exception, {} };
bool pushed_execution_context = false;
ExecutionContext execution_context(vm().heap());
if (vm().execution_context_stack().is_empty() || !vm().running_execution_context().lexical_environment) {
// The "normal" interpreter pushes an execution context without environment so in that case we also want to push one.
execution_context.this_value = &realm.global_object();
static DeprecatedFlyString global_execution_context_name = "(*BC* global execution context)";
execution_context.function_name = global_execution_context_name;
execution_context.lexical_environment = &realm.global_environment();
execution_context.variable_environment = &realm.global_environment();
execution_context.realm = realm;
execution_context.is_strict_mode = executable.is_strict_mode;
vm().push_execution_context(execution_context);
pushed_execution_context = true;
}
TemporaryChange restore_current_block { m_current_block, entry_point ?: executable.basic_blocks.first() };
if (in_frame)
push_call_frame(in_frame, executable.number_of_registers);
else
push_call_frame(make<CallFrame>(), executable.number_of_registers);
for (;;) {
Bytecode::InstructionStreamIterator pc(m_current_block->instruction_stream());
TemporaryChange temp_change { m_pc, &pc };
// FIXME: This is getting kinda spaghetti-y
bool will_jump = false;
bool will_return = false;
bool will_yield = false;
while (!pc.at_end()) {
auto& instruction = *pc;
auto ran_or_error = instruction.execute(*this);
if (ran_or_error.is_error()) {
auto exception_value = *ran_or_error.throw_completion().value();
m_saved_exception = exception_value;
if (unwind_contexts().is_empty())
break;
auto& unwind_context = unwind_contexts().last();
if (unwind_context.executable != m_current_executable)
break;
if (unwind_context.handler && !unwind_context.handler_called) {
vm().running_execution_context().lexical_environment = unwind_context.lexical_environment;
m_current_block = unwind_context.handler;
unwind_context.handler_called = true;
accumulator() = exception_value;
m_saved_exception = {};
will_jump = true;
break;
}
if (unwind_context.finalizer) {
m_current_block = unwind_context.finalizer;
// If an exception was thrown inside the corresponding `catch` block, we need to rethrow it
// from the `finally` block. But if the exception is from the `try` block, and has already been
// handled by `catch`, we swallow it.
if (!unwind_context.handler_called)
m_saved_exception = {};
will_jump = true;
break;
}
// An unwind context with no handler or finalizer? We have nowhere to jump, and continuing on will make us crash on the next `Call` to a non-native function if there's an exception! So let's crash here instead.
// If you run into this, you probably forgot to remove the current unwind_context somewhere.
VERIFY_NOT_REACHED();
}
if (m_pending_jump.has_value()) {
m_current_block = m_pending_jump.release_value();
will_jump = true;
break;
}
if (m_return_value.has_value()) {
will_return = true;
// Note: A `yield` statement will not go through a finally statement,
// hence we need to set a flag to not do so,
// but we generate a Yield Operation in the case of returns in
// generators as well, so we need to check if it will actually
// continue or is a `return` in disguise
will_yield = (instruction.type() == Instruction::Type::Yield && static_cast<Op::Yield const&>(instruction).continuation().has_value()) || instruction.type() == Instruction::Type::Await;
break;
}
++pc;
}
if (will_jump)
continue;
if (!unwind_contexts().is_empty() && !will_yield) {
auto& unwind_context = unwind_contexts().last();
if (unwind_context.executable == m_current_executable && unwind_context.finalizer) {
m_saved_return_value = m_return_value;
m_return_value = {};
m_current_block = unwind_context.finalizer;
// the unwind_context will be pop'ed when entering the finally block
continue;
}
}
if (pc.at_end())
break;
if (m_saved_exception.has_value())
break;
if (will_return)
break;
}
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable);
if constexpr (JS_BYTECODE_DEBUG) {
for (size_t i = 0; i < registers().size(); ++i) {
String value_string;
if (registers()[i].is_empty())
value_string = MUST("(empty)"_string);
else
value_string = MUST(registers()[i].to_string_without_side_effects());
dbgln("[{:3}] {}", i, value_string);
}
}
auto frame = pop_call_frame();
Value return_value = js_undefined();
if (m_return_value.has_value()) {
return_value = m_return_value.release_value();
} else if (m_saved_return_value.has_value() && !m_saved_exception.has_value()) {
return_value = m_saved_return_value.release_value();
}
// NOTE: The return value from a called function is put into $0 in the caller context.
if (!m_call_frames.is_empty())
call_frame().registers[0] = return_value;
// At this point we may have already run any queued promise jobs via on_call_stack_emptied,
// in which case this is a no-op.
vm().run_queued_promise_jobs();
if (pushed_execution_context) {
VERIFY(&vm().running_execution_context() == &execution_context);
vm().pop_execution_context();
}
vm().finish_execution_generation();
if (m_saved_exception.has_value()) {
Value thrown_value = m_saved_exception.value();
m_saved_exception = {};
m_saved_return_value = {};
if (auto* call_frame = frame.get_pointer<NonnullOwnPtr<CallFrame>>())
return { throw_completion(thrown_value), move(*call_frame) };
return { throw_completion(thrown_value), nullptr };
}
if (auto* call_frame = frame.get_pointer<NonnullOwnPtr<CallFrame>>())
return { return_value, move(*call_frame) };
return { return_value, nullptr };
}
void Interpreter::enter_unwind_context(Optional<Label> handler_target, Optional<Label> finalizer_target)
{
unwind_contexts().empend(
m_current_executable,
handler_target.has_value() ? &handler_target->block() : nullptr,
finalizer_target.has_value() ? &finalizer_target->block() : nullptr,
vm().running_execution_context().lexical_environment);
}
void Interpreter::leave_unwind_context()
{
unwind_contexts().take_last();
}
ThrowCompletionOr<void> Interpreter::continue_pending_unwind(Label const& resume_label)
{
if (m_saved_exception.has_value()) {
return throw_completion(m_saved_exception.release_value());
}
if (m_saved_return_value.has_value()) {
do_return(m_saved_return_value.release_value());
return {};
}
if (m_scheduled_jump) {
// FIXME: If we `break` or `continue` in the finally, we need to clear
// this field
jump(Label { *m_scheduled_jump });
m_scheduled_jump = nullptr;
} else {
jump(resume_label);
}
return {};
}
VM::InterpreterExecutionScope Interpreter::ast_interpreter_scope(Realm& realm)
{
if (!m_ast_interpreter)
m_ast_interpreter = JS::Interpreter::create_with_existing_realm(realm);
return { *m_ast_interpreter };
}
size_t Interpreter::pc() const
{
return m_pc ? m_pc->offset() : 0;
}
DeprecatedString Interpreter::debug_position() const
{
return DeprecatedString::formatted("{}:{:2}:{:4x}", m_current_executable->name, m_current_block->name(), pc());
}
ThrowCompletionOr<NonnullOwnPtr<Bytecode::Executable>> compile(VM& vm, ASTNode const& node, FunctionKind kind, DeprecatedFlyString const& name)
{
auto executable_result = Bytecode::Generator::generate(node, kind);
if (executable_result.is_error())
return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string()));
auto bytecode_executable = executable_result.release_value();
bytecode_executable->name = name;
if (Bytecode::g_dump_bytecode)
bytecode_executable->dump();
return bytecode_executable;
}
Realm& Interpreter::realm()
{
return *m_vm.current_realm();
}
void Interpreter::push_call_frame(Variant<NonnullOwnPtr<CallFrame>, CallFrame*> frame, size_t register_count)
{
m_call_frames.append(move(frame));
this->call_frame().registers.resize(register_count);
m_current_call_frame = this->call_frame().registers;
}
Variant<NonnullOwnPtr<CallFrame>, CallFrame*> Interpreter::pop_call_frame()
{
auto frame = m_call_frames.take_last();
m_current_call_frame = m_call_frames.is_empty() ? Span<Value> {} : this->call_frame().registers;
return frame;
}
}