ladybird/Userland/Libraries/LibELF/DynamicLoader.cpp
Idan Horowitz 753844ec96 LibELF: Take TLS segment alignment into account in DynamicLoader
Previously we would just tightly pack the different libraries' TLS
segments together, but that is incorrect, as they might require some
kind of minimum alignment for their TLS base address.

We now plumb the required TLS segment alignment down to the TLS block
linear allocator and align the base address down to the appropriate
alignment.
2022-07-05 11:26:10 +02:00

740 lines
27 KiB
C++

/*
* Copyright (c) 2019-2020, Andrew Kaster <akaster@serenityos.org>
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Daniel Bertalan <dani@danielbertalan.dev>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Optional.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibDl/dlfcn.h>
#include <LibDl/dlfcn_integration.h>
#include <LibELF/DynamicLinker.h>
#include <LibELF/DynamicLoader.h>
#include <LibELF/Hashes.h>
#include <LibELF/Validation.h>
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#ifndef __serenity__
static void* mmap_with_name(void* addr, size_t length, int prot, int flags, int fd, off_t offset, char const*)
{
return mmap(addr, length, prot, flags, fd, offset);
}
# define MAP_RANDOMIZED 0
#endif
namespace ELF {
Result<NonnullRefPtr<DynamicLoader>, DlErrorMessage> DynamicLoader::try_create(int fd, String filename, String filepath)
{
struct stat stat;
if (fstat(fd, &stat) < 0) {
return DlErrorMessage { "DynamicLoader::try_create fstat" };
}
VERIFY(stat.st_size >= 0);
auto size = static_cast<size_t>(stat.st_size);
if (size < sizeof(ElfW(Ehdr)))
return DlErrorMessage { String::formatted("File {} has invalid ELF header", filename) };
String file_mmap_name = String::formatted("ELF_DYN: {}", filepath);
auto* data = mmap_with_name(nullptr, size, PROT_READ, MAP_SHARED, fd, 0, file_mmap_name.characters());
if (data == MAP_FAILED) {
return DlErrorMessage { "DynamicLoader::try_create mmap" };
}
auto loader = adopt_ref(*new DynamicLoader(fd, move(filename), data, size, filepath));
if (!loader->is_valid())
return DlErrorMessage { "ELF image validation failed" };
return loader;
}
DynamicLoader::DynamicLoader(int fd, String filename, void* data, size_t size, String filepath)
: m_filename(move(filename))
, m_filepath(move(filepath))
, m_file_size(size)
, m_image_fd(fd)
, m_file_data(data)
{
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
m_valid = validate();
if (m_valid)
find_tls_size_and_alignment();
else
dbgln("Image validation failed for file {}", m_filename);
}
DynamicLoader::~DynamicLoader()
{
if (munmap(m_file_data, m_file_size) < 0) {
perror("munmap");
VERIFY_NOT_REACHED();
}
if (close(m_image_fd) < 0) {
perror("close");
VERIFY_NOT_REACHED();
}
}
DynamicObject const& DynamicLoader::dynamic_object() const
{
if (!m_cached_dynamic_object) {
VirtualAddress dynamic_section_address;
image().for_each_program_header([&dynamic_section_address](auto program_header) {
if (program_header.type() == PT_DYNAMIC) {
dynamic_section_address = VirtualAddress(program_header.raw_data());
}
});
VERIFY(!dynamic_section_address.is_null());
m_cached_dynamic_object = ELF::DynamicObject::create(m_filepath, VirtualAddress(image().base_address()), dynamic_section_address);
}
return *m_cached_dynamic_object;
}
void DynamicLoader::find_tls_size_and_alignment()
{
image().for_each_program_header([this](auto program_header) {
if (program_header.type() == PT_TLS) {
m_tls_size_of_current_object = program_header.size_in_memory();
auto alignment = program_header.alignment();
VERIFY(!alignment || is_power_of_two(alignment));
m_tls_alignment_of_current_object = alignment > 1 ? alignment : 0; // No need to reserve extra space for single byte alignment
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
bool DynamicLoader::validate()
{
if (!image().is_valid())
return false;
auto* elf_header = (ElfW(Ehdr)*)m_file_data;
if (!validate_elf_header(*elf_header, m_file_size))
return false;
auto result_or_error = validate_program_headers(*elf_header, m_file_size, { m_file_data, m_file_size });
if (result_or_error.is_error() || !result_or_error.value())
return false;
return true;
}
RefPtr<DynamicObject> DynamicLoader::map()
{
if (m_dynamic_object) {
// Already mapped.
return nullptr;
}
if (!m_valid) {
dbgln("DynamicLoader::map failed: image is invalid");
return nullptr;
}
load_program_headers();
VERIFY(!m_base_address.is_null());
m_dynamic_object = DynamicObject::create(m_filepath, m_base_address, m_dynamic_section_address);
m_dynamic_object->set_tls_offset(m_tls_offset);
m_dynamic_object->set_tls_size(m_tls_size_of_current_object);
return m_dynamic_object;
}
bool DynamicLoader::link(unsigned flags)
{
return load_stage_2(flags);
}
bool DynamicLoader::load_stage_2(unsigned flags)
{
VERIFY(flags & RTLD_GLOBAL);
if (m_dynamic_object->has_text_relocations()) {
dbgln("\033[33mWarning:\033[0m Dynamic object {} has text relocations", m_dynamic_object->filepath());
for (auto& text_segment : m_text_segments) {
VERIFY(text_segment.address().get() != 0);
#ifndef AK_OS_MACOS
// Remap this text region as private.
if (mremap(text_segment.address().as_ptr(), text_segment.size(), text_segment.size(), MAP_PRIVATE) == MAP_FAILED) {
perror("mremap .text: MAP_PRIVATE");
return false;
}
#endif
if (0 > mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_WRITE)) {
perror("mprotect .text: PROT_READ | PROT_WRITE"); // FIXME: dlerror?
return false;
}
}
} else {
// .text needs to be executable while we process relocations because it might contain IFUNC resolvers.
// We don't allow IFUNC resolvers in objects with textrels.
for (auto& text_segment : m_text_segments) {
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
perror("mprotect .text: PROT_READ | PROT_EXEC");
return false;
}
}
}
do_main_relocations();
return true;
}
void DynamicLoader::do_main_relocations()
{
auto do_single_relocation = [&](const ELF::DynamicObject::Relocation& relocation) {
switch (do_relocation(relocation, ShouldInitializeWeak::No)) {
case RelocationResult::Failed:
dbgln("Loader.so: {} unresolved symbol '{}'", m_filename, relocation.symbol().name());
VERIFY_NOT_REACHED();
case RelocationResult::ResolveLater:
m_unresolved_relocations.append(relocation);
break;
case RelocationResult::Success:
break;
}
};
do_relr_relocations();
m_dynamic_object->relocation_section().for_each_relocation(do_single_relocation);
m_dynamic_object->plt_relocation_section().for_each_relocation(do_single_relocation);
}
Result<NonnullRefPtr<DynamicObject>, DlErrorMessage> DynamicLoader::load_stage_3(unsigned flags)
{
do_lazy_relocations();
if (flags & RTLD_LAZY) {
if (m_dynamic_object->has_plt())
setup_plt_trampoline();
}
if (m_dynamic_object->has_text_relocations()) {
// If we don't have textrels, .text has already been made executable by this point in load_stage_2.
for (auto& text_segment : m_text_segments) {
if (mprotect(text_segment.address().as_ptr(), text_segment.size(), PROT_READ | PROT_EXEC) < 0) {
return DlErrorMessage { String::formatted("mprotect .text: PROT_READ | PROT_EXEC: {}", strerror(errno)) };
}
}
}
if (m_relro_segment_size) {
if (mprotect(m_relro_segment_address.as_ptr(), m_relro_segment_size, PROT_READ) < 0) {
return DlErrorMessage { String::formatted("mprotect .relro: PROT_READ: {}", strerror(errno)) };
}
#ifdef __serenity__
if (set_mmap_name(m_relro_segment_address.as_ptr(), m_relro_segment_size, String::formatted("{}: .relro", m_filepath).characters()) < 0) {
return DlErrorMessage { String::formatted("set_mmap_name .relro: {}", strerror(errno)) };
}
#endif
}
m_fully_relocated = true;
return NonnullRefPtr<DynamicObject> { *m_dynamic_object };
}
void DynamicLoader::load_stage_4()
{
call_object_init_functions();
m_fully_initialized = true;
}
void DynamicLoader::do_lazy_relocations()
{
for (auto const& relocation : m_unresolved_relocations) {
if (auto res = do_relocation(relocation, ShouldInitializeWeak::Yes); res != RelocationResult::Success) {
dbgln("Loader.so: {} unresolved symbol '{}'", m_filename, relocation.symbol().name());
VERIFY_NOT_REACHED();
}
}
}
void DynamicLoader::load_program_headers()
{
FlatPtr ph_load_start = SIZE_MAX;
FlatPtr ph_load_end = 0;
// We walk the program header list once to find the requested address ranges of the program.
// We don't fill in the list of regions yet to keep malloc memory blocks from interfering with our reservation.
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
if (program_header.type() != PT_LOAD)
return;
FlatPtr section_start = program_header.vaddr().get();
FlatPtr section_end = section_start + program_header.size_in_memory();
if (ph_load_start > section_start)
ph_load_start = section_start;
if (ph_load_end < section_end)
ph_load_end = section_end;
});
void* requested_load_address = image().is_dynamic() ? nullptr : reinterpret_cast<void*>(ph_load_start);
int reservation_mmap_flags = MAP_ANON | MAP_PRIVATE | MAP_NORESERVE;
if (image().is_dynamic())
reservation_mmap_flags |= MAP_RANDOMIZED;
#ifdef MAP_FIXED_NOREPLACE
else
reservation_mmap_flags |= MAP_FIXED_NOREPLACE;
#endif
// First, we make a dummy reservation mapping, in order to allocate enough VM
// to hold all regions contiguously in the address space.
FlatPtr ph_load_base = ph_load_start & ~(FlatPtr)0xfffu;
ph_load_end = round_up_to_power_of_two(ph_load_end, PAGE_SIZE);
size_t total_mapping_size = ph_load_end - ph_load_base;
// Before we make our reservation, unmap our existing mapped ELF image that we used for reading header information.
// This leaves our pointers dangling momentarily, but it reduces the chance that we will conflict with ourselves.
if (munmap(m_file_data, m_file_size) < 0) {
perror("munmap old mapping");
VERIFY_NOT_REACHED();
}
m_elf_image = nullptr;
m_file_data = nullptr;
auto* reservation = mmap(requested_load_address, total_mapping_size, PROT_NONE, reservation_mmap_flags, 0, 0);
if (reservation == MAP_FAILED) {
perror("mmap reservation");
VERIFY_NOT_REACHED();
}
// Now that we can't accidentally block our requested space, re-map our ELF image.
String file_mmap_name = String::formatted("ELF_DYN: {}", m_filepath);
auto* data = mmap_with_name(nullptr, m_file_size, PROT_READ, MAP_SHARED, m_image_fd, 0, file_mmap_name.characters());
if (data == MAP_FAILED) {
perror("mmap new mapping");
VERIFY_NOT_REACHED();
}
m_file_data = data;
m_elf_image = adopt_own(*new ELF::Image((u8*)m_file_data, m_file_size));
VERIFY(requested_load_address == nullptr || reservation == requested_load_address);
m_base_address = VirtualAddress { reservation };
// Then we unmap the reservation.
if (munmap(reservation, total_mapping_size) < 0) {
perror("munmap reservation");
VERIFY_NOT_REACHED();
}
// Most binaries have four loadable regions, three of which are mapped
// (symbol tables/relocation information, executable instructions, read-only data)
// and one of which is copied (modifiable data).
// These are allocated in-line to cut down on the malloc calls.
Vector<ProgramHeaderRegion, 4> load_regions;
Vector<ProgramHeaderRegion, 3> map_regions;
Vector<ProgramHeaderRegion, 1> copy_regions;
Optional<ProgramHeaderRegion> tls_region;
Optional<ProgramHeaderRegion> relro_region;
VirtualAddress dynamic_region_desired_vaddr;
image().for_each_program_header([&](Image::ProgramHeader const& program_header) {
ProgramHeaderRegion region {};
region.set_program_header(program_header.raw_header());
if (region.is_tls_template()) {
VERIFY(!tls_region.has_value());
tls_region = region;
} else if (region.is_load()) {
if (region.size_in_memory() == 0)
return;
load_regions.append(region);
if (region.is_writable()) {
copy_regions.append(region);
} else {
map_regions.append(region);
}
} else if (region.is_dynamic()) {
dynamic_region_desired_vaddr = region.desired_load_address();
} else if (region.is_relro()) {
VERIFY(!relro_region.has_value());
relro_region = region;
}
});
VERIFY(!map_regions.is_empty() || !copy_regions.is_empty());
auto compare_load_address = [](ProgramHeaderRegion& a, ProgramHeaderRegion& b) {
return a.desired_load_address().as_ptr() < b.desired_load_address().as_ptr();
};
quick_sort(load_regions, compare_load_address);
quick_sort(map_regions, compare_load_address);
quick_sort(copy_regions, compare_load_address);
// Process regions in order: .text, .data, .tls
for (auto& region : map_regions) {
FlatPtr ph_desired_base = region.desired_load_address().get();
FlatPtr ph_base = region.desired_load_address().page_base().get();
FlatPtr ph_end = ph_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_base, PAGE_SIZE);
StringBuilder builder;
builder.append(m_filepath);
if (region.is_executable())
builder.append(": .text");
else
builder.append(": .rodata");
// Now we can map the text segment at the reserved address.
auto* segment_base = (u8*)mmap_with_name(
(u8*)reservation + ph_base - ph_load_base,
ph_desired_base - ph_base + region.size_in_image(),
PROT_READ,
MAP_FILE | MAP_SHARED | MAP_FIXED,
m_image_fd,
VirtualAddress { region.offset() }.page_base().get(),
builder.to_string().characters());
if (segment_base == MAP_FAILED) {
perror("mmap non-writable");
VERIFY_NOT_REACHED();
}
if (region.is_executable())
m_text_segments.append({ VirtualAddress { segment_base }, ph_end - ph_base });
}
VERIFY(requested_load_address == nullptr || requested_load_address == reservation);
if (relro_region.has_value()) {
m_relro_segment_size = relro_region->size_in_memory();
m_relro_segment_address = VirtualAddress { (u8*)reservation + relro_region->desired_load_address().get() - ph_load_base };
}
if (image().is_dynamic())
m_dynamic_section_address = VirtualAddress { (u8*)reservation + dynamic_region_desired_vaddr.get() - ph_load_base };
else
m_dynamic_section_address = dynamic_region_desired_vaddr;
for (auto& region : copy_regions) {
FlatPtr ph_data_base = region.desired_load_address().page_base().get();
FlatPtr ph_data_end = ph_data_base + round_up_to_power_of_two(region.size_in_memory() + region.desired_load_address().get() - ph_data_base, PAGE_SIZE);
auto* data_segment_address = (u8*)reservation + ph_data_base - ph_load_base;
size_t data_segment_size = ph_data_end - ph_data_base;
// Finally, we make an anonymous mapping for the data segment. Contents are then copied from the file.
auto* data_segment = (u8*)mmap_with_name(
data_segment_address,
data_segment_size,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED,
0,
0,
String::formatted("{}: .data", m_filepath).characters());
if (MAP_FAILED == data_segment) {
perror("mmap writable");
VERIFY_NOT_REACHED();
}
VirtualAddress data_segment_start;
if (image().is_dynamic())
data_segment_start = VirtualAddress { (u8*)reservation + region.desired_load_address().get() };
else
data_segment_start = region.desired_load_address();
VERIFY(data_segment_start.as_ptr() + region.size_in_memory() <= data_segment + data_segment_size);
memcpy(data_segment_start.as_ptr(), (u8*)m_file_data + region.offset(), region.size_in_image());
}
// FIXME: Initialize the values in the TLS section. Currently, it is zeroed.
}
DynamicLoader::RelocationResult DynamicLoader::do_relocation(const ELF::DynamicObject::Relocation& relocation, ShouldInitializeWeak should_initialize_weak)
{
FlatPtr* patch_ptr = nullptr;
if (is_dynamic())
patch_ptr = (FlatPtr*)(m_dynamic_object->base_address().as_ptr() + relocation.offset());
else
patch_ptr = (FlatPtr*)(FlatPtr)relocation.offset();
auto call_ifunc_resolver = [](VirtualAddress address) {
return VirtualAddress { reinterpret_cast<DynamicObject::IfuncResolver>(address.get())() };
};
switch (relocation.type()) {
#if ARCH(I386)
case R_386_NONE:
#else
case R_X86_64_NONE:
#endif
// Apparently most loaders will just skip these?
// Seems if the 'link editor' generates one something is funky with your code
break;
#if ARCH(I386)
case R_386_32: {
#else
case R_X86_64_64: {
#endif
auto symbol = relocation.symbol();
auto res = lookup_symbol(symbol);
if (!res.has_value()) {
if (symbol.bind() == STB_WEAK)
return RelocationResult::ResolveLater;
dbgln("ERROR: symbol not found: {}.", symbol.name());
return RelocationResult::Failed;
}
auto symbol_address = res.value().address;
if (relocation.addend_used())
*patch_ptr = symbol_address.get() + relocation.addend();
else
*patch_ptr += symbol_address.get();
if (res.value().type == STT_GNU_IFUNC)
*patch_ptr = call_ifunc_resolver(VirtualAddress { *patch_ptr }).get();
break;
}
#if ARCH(I386)
case R_386_PC32: {
auto symbol = relocation.symbol();
auto result = lookup_symbol(symbol);
if (!result.has_value())
return RelocationResult::Failed;
auto relative_offset = result.value().address - m_dynamic_object->base_address().offset(relocation.offset());
*patch_ptr += relative_offset.get();
break;
}
case R_386_GLOB_DAT: {
#else
case R_X86_64_GLOB_DAT: {
#endif
auto symbol = relocation.symbol();
auto res = lookup_symbol(symbol);
VirtualAddress symbol_location;
if (!res.has_value()) {
if (symbol.bind() == STB_WEAK) {
if (should_initialize_weak == ShouldInitializeWeak::No)
return RelocationResult::ResolveLater;
} else {
// Symbol not found
return RelocationResult::Failed;
}
symbol_location = VirtualAddress { (FlatPtr)0 };
} else {
symbol_location = res.value().address;
if (res.value().type == STT_GNU_IFUNC) {
if (res.value().dynamic_object != nullptr && res.value().dynamic_object->has_text_relocations()) {
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
return RelocationResult::Failed;
}
symbol_location = call_ifunc_resolver(symbol_location);
}
}
VERIFY(symbol_location != m_dynamic_object->base_address());
*patch_ptr = symbol_location.get();
break;
}
#if ARCH(I386)
case R_386_RELATIVE: {
#else
case R_X86_64_RELATIVE: {
#endif
// FIXME: According to the spec, R_386_relative ones must be done first.
// We could explicitly do them first using m_number_of_relocations from DT_RELCOUNT
// However, our compiler is nice enough to put them at the front of the relocations for us :)
if (relocation.addend_used())
*patch_ptr = m_dynamic_object->base_address().offset(relocation.addend()).get();
else
*patch_ptr += m_dynamic_object->base_address().get();
break;
}
#if ARCH(I386)
case R_386_TLS_TPOFF32:
case R_386_TLS_TPOFF: {
#else
case R_X86_64_TPOFF64: {
#endif
auto symbol = relocation.symbol();
FlatPtr symbol_value;
DynamicObject const* dynamic_object_of_symbol;
if (relocation.symbol_index() != 0) {
auto res = lookup_symbol(symbol);
if (!res.has_value())
break;
VERIFY(symbol.type() != STT_GNU_IFUNC);
symbol_value = res.value().value;
dynamic_object_of_symbol = res.value().dynamic_object;
} else {
symbol_value = 0;
dynamic_object_of_symbol = &relocation.dynamic_object();
}
VERIFY(dynamic_object_of_symbol);
size_t addend = relocation.addend_used() ? relocation.addend() : *patch_ptr;
*patch_ptr = negative_offset_from_tls_block_end(dynamic_object_of_symbol->tls_offset().value(), symbol_value + addend);
break;
}
#if ARCH(I386)
case R_386_JMP_SLOT: {
#else
case R_X86_64_JUMP_SLOT: {
#endif
// FIXME: Or BIND_NOW flag passed in?
if (m_dynamic_object->must_bind_now()) {
// Eagerly BIND_NOW the PLT entries, doing all the symbol looking goodness
// The patch method returns the address for the LAZY fixup path, but we don't need it here
m_dynamic_object->patch_plt_entry(relocation.offset_in_section());
} else {
auto relocation_address = (FlatPtr*)relocation.address().as_ptr();
if (image().is_dynamic())
*relocation_address += m_dynamic_object->base_address().get();
}
break;
}
#if ARCH(I386)
case R_386_IRELATIVE: {
#else
case R_X86_64_IRELATIVE: {
#endif
VirtualAddress resolver;
if (relocation.addend_used())
resolver = m_dynamic_object->base_address().offset(relocation.addend());
else
resolver = m_dynamic_object->base_address().offset(*patch_ptr);
if (m_dynamic_object->has_text_relocations()) {
dbgln("\033[31mError:\033[0m Refusing to call IFUNC resolver defined in an object with text relocations.");
return RelocationResult::Failed;
}
*patch_ptr = call_ifunc_resolver(resolver).get();
break;
}
default:
// Raise the alarm! Someone needs to implement this relocation type
dbgln("Found a new exciting relocation type {}", relocation.type());
VERIFY_NOT_REACHED();
}
return RelocationResult::Success;
}
void DynamicLoader::do_relr_relocations()
{
auto base_address = m_dynamic_object->base_address().get();
m_dynamic_object->for_each_relr_relocation([base_address](FlatPtr address) {
*(FlatPtr*)address += base_address;
});
}
ssize_t DynamicLoader::negative_offset_from_tls_block_end(ssize_t tls_offset, size_t value_of_symbol) const
{
ssize_t offset = static_cast<ssize_t>(tls_offset + value_of_symbol);
// At offset 0 there's the thread's ThreadSpecificData structure, we don't want to collide with it.
VERIFY(offset < 0);
return offset;
}
void DynamicLoader::copy_initial_tls_data_into(ByteBuffer& buffer) const
{
u8 const* tls_data = nullptr;
size_t tls_size_in_image = 0;
image().for_each_program_header([this, &tls_data, &tls_size_in_image](ELF::Image::ProgramHeader program_header) {
if (program_header.type() != PT_TLS)
return IterationDecision::Continue;
tls_data = (const u8*)m_file_data + program_header.offset();
tls_size_in_image = program_header.size_in_image();
return IterationDecision::Break;
});
if (!tls_data || !tls_size_in_image)
return;
image().for_each_symbol([this, &buffer, tls_data](ELF::Image::Symbol symbol) {
if (symbol.type() != STT_TLS)
return IterationDecision::Continue;
ssize_t negative_offset = negative_offset_from_tls_block_end(m_tls_offset, symbol.value());
VERIFY(symbol.size() != 0);
VERIFY(buffer.size() + negative_offset + symbol.size() <= buffer.size());
memcpy(buffer.data() + buffer.size() + negative_offset, tls_data + symbol.value(), symbol.size());
return IterationDecision::Continue;
});
}
// Defined in <arch>/plt_trampoline.S
extern "C" void _plt_trampoline(void) __attribute__((visibility("hidden")));
void DynamicLoader::setup_plt_trampoline()
{
VERIFY(m_dynamic_object);
VERIFY(m_dynamic_object->has_plt());
VirtualAddress got_address = m_dynamic_object->plt_got_base_address();
auto* got_ptr = (FlatPtr*)got_address.as_ptr();
got_ptr[1] = (FlatPtr)m_dynamic_object.ptr();
got_ptr[2] = (FlatPtr)&_plt_trampoline;
}
// Called from our ASM routine _plt_trampoline.
// Tell the compiler that it might be called from other places:
extern "C" FlatPtr _fixup_plt_entry(DynamicObject* object, u32 relocation_offset);
extern "C" FlatPtr _fixup_plt_entry(DynamicObject* object, u32 relocation_offset)
{
return object->patch_plt_entry(relocation_offset).get();
}
void DynamicLoader::call_object_init_functions()
{
typedef void (*InitFunc)();
if (m_dynamic_object->has_init_section()) {
auto init_function = (InitFunc)(m_dynamic_object->init_section().address().as_ptr());
(init_function)();
}
if (m_dynamic_object->has_init_array_section()) {
auto init_array_section = m_dynamic_object->init_array_section();
InitFunc* init_begin = (InitFunc*)(init_array_section.address().as_ptr());
InitFunc* init_end = init_begin + init_array_section.entry_count();
while (init_begin != init_end) {
// Android sources claim that these can be -1, to be ignored.
// 0 definitely shows up. Apparently 0/-1 are valid? Confusing.
if (!*init_begin || ((FlatPtr)*init_begin == (FlatPtr)-1))
continue;
(*init_begin)();
++init_begin;
}
}
}
Optional<DynamicObject::SymbolLookupResult> DynamicLoader::lookup_symbol(const ELF::DynamicObject::Symbol& symbol)
{
if (symbol.is_undefined() || symbol.bind() == STB_WEAK)
return DynamicLinker::lookup_global_symbol(symbol.name());
return DynamicObject::SymbolLookupResult { symbol.value(), symbol.size(), symbol.address(), symbol.bind(), symbol.type(), &symbol.object() };
}
} // end namespace ELF