ladybird/Userland/Libraries/LibAudio/Buffer.cpp
kleines Filmröllchen d049626f40 Userland+LibAudio: Make audio applications support dynamic sample rate
All audio applications (aplay, Piano, Sound Player) respect the ability
of the system to have theoretically any sample rate. Therefore, they
resample their own audio into the system sample rate.

LibAudio previously had its loaders resample their own audio, even
though they expose their sample rate. This is now changed. The loaders
output audio data in their file's sample rate, which the user has to
query and resample appropriately. Resampling code from Buffer, WavLoader
and FlacLoader is removed.

Note that these applications only check the sample rate at startup,
which is reasonable (the user has to restart applications when changing
the sample rate). Fully dynamic adaptation could both lead to errors and
will require another IPC interface. This seems to be enough for now.
2021-08-27 23:35:27 +04:30

241 lines
6.5 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Buffer.h"
#include <AK/Atomic.h>
#include <AK/Debug.h>
#include <AK/StdLibExtras.h>
#include <AK/String.h>
namespace Audio {
u16 pcm_bits_per_sample(PcmSampleFormat format)
{
switch (format) {
case Uint8:
return 8;
case Int16:
return 16;
case Int24:
return 24;
case Int32:
case Float32:
return 32;
case Float64:
return 64;
default:
VERIFY_NOT_REACHED();
}
}
String sample_format_name(PcmSampleFormat format)
{
bool is_float = format == Float32 || format == Float64;
return String::formatted("PCM {}bit {}", pcm_bits_per_sample(format), is_float ? "Float" : "LE");
}
i32 Buffer::allocate_id()
{
static Atomic<i32> next_id;
return next_id++;
}
template<typename SampleReader>
static void read_samples_from_stream(InputMemoryStream& stream, SampleReader read_sample, Vector<Frame>& samples, int num_channels)
{
double norm_l = 0;
double norm_r = 0;
switch (num_channels) {
case 1:
for (;;) {
norm_l = read_sample(stream);
samples.append(Frame(norm_l));
if (stream.handle_any_error()) {
break;
}
}
break;
case 2:
for (;;) {
norm_l = read_sample(stream);
norm_r = read_sample(stream);
samples.append(Frame(norm_l, norm_r));
if (stream.handle_any_error()) {
break;
}
}
break;
default:
VERIFY_NOT_REACHED();
}
}
static double read_float_sample_64(InputMemoryStream& stream)
{
LittleEndian<double> sample;
stream >> sample;
return double(sample);
}
static double read_float_sample_32(InputMemoryStream& stream)
{
LittleEndian<float> sample;
stream >> sample;
return double(sample);
}
static double read_norm_sample_24(InputMemoryStream& stream)
{
u8 byte = 0;
stream >> byte;
u32 sample1 = byte;
stream >> byte;
u32 sample2 = byte;
stream >> byte;
u32 sample3 = byte;
i32 value = 0;
value = sample1 << 8;
value |= (sample2 << 16);
value |= (sample3 << 24);
return double(value) / NumericLimits<i32>::max();
}
static double read_norm_sample_16(InputMemoryStream& stream)
{
LittleEndian<i16> sample;
stream >> sample;
return double(sample) / NumericLimits<i16>::max();
}
static double read_norm_sample_8(InputMemoryStream& stream)
{
u8 sample = 0;
stream >> sample;
return double(sample) / NumericLimits<u8>::max();
}
RefPtr<Buffer> Buffer::from_pcm_data(ReadonlyBytes data, int num_channels, PcmSampleFormat sample_format)
{
InputMemoryStream stream { data };
return from_pcm_stream(stream, num_channels, sample_format, data.size() / (pcm_bits_per_sample(sample_format) / 8));
}
RefPtr<Buffer> Buffer::from_pcm_stream(InputMemoryStream& stream, int num_channels, PcmSampleFormat sample_format, int num_samples)
{
Vector<Frame> fdata;
fdata.ensure_capacity(num_samples);
switch (sample_format) {
case PcmSampleFormat::Uint8:
read_samples_from_stream(stream, read_norm_sample_8, fdata, num_channels);
break;
case PcmSampleFormat::Int16:
read_samples_from_stream(stream, read_norm_sample_16, fdata, num_channels);
break;
case PcmSampleFormat::Int24:
read_samples_from_stream(stream, read_norm_sample_24, fdata, num_channels);
break;
case PcmSampleFormat::Float32:
read_samples_from_stream(stream, read_float_sample_32, fdata, num_channels);
break;
case PcmSampleFormat::Float64:
read_samples_from_stream(stream, read_float_sample_64, fdata, num_channels);
break;
default:
VERIFY_NOT_REACHED();
}
// We should handle this in a better way above, but for now --
// just make sure we're good. Worst case we just write some 0s where they
// don't belong.
VERIFY(!stream.handle_any_error());
return Buffer::create_with_samples(move(fdata));
}
template<typename SampleType>
ResampleHelper<SampleType>::ResampleHelper(u32 source, u32 target)
: m_source(source)
, m_target(target)
{
}
template ResampleHelper<i32>::ResampleHelper(u32, u32);
template ResampleHelper<double>::ResampleHelper(u32, u32);
template<typename SampleType>
Vector<SampleType> ResampleHelper<SampleType>::resample(Vector<SampleType> to_resample)
{
Vector<SampleType> resampled;
resampled.ensure_capacity(to_resample.size() * ceil_div(m_source, m_target));
for (auto sample : to_resample) {
process_sample(sample, sample);
while (read_sample(sample, sample))
resampled.unchecked_append(sample);
}
return resampled;
}
template Vector<i32> ResampleHelper<i32>::resample(Vector<i32>);
template Vector<double> ResampleHelper<double>::resample(Vector<double>);
NonnullRefPtr<Buffer> resample_buffer(ResampleHelper<double>& resampler, Buffer const& to_resample)
{
Vector<Frame> resampled;
resampled.ensure_capacity(to_resample.sample_count() * ceil_div(resampler.source(), resampler.target()));
for (size_t i = 0; i < static_cast<size_t>(to_resample.sample_count()); ++i) {
auto sample = to_resample.samples()[i];
resampler.process_sample(sample.left, sample.right);
while (resampler.read_sample(sample.left, sample.right))
resampled.append(sample);
}
return Buffer::create_with_samples(move(resampled));
}
template<typename SampleType>
void ResampleHelper<SampleType>::process_sample(SampleType sample_l, SampleType sample_r)
{
m_last_sample_l = sample_l;
m_last_sample_r = sample_r;
m_current_ratio += m_target;
}
template void ResampleHelper<i32>::process_sample(i32, i32);
template void ResampleHelper<double>::process_sample(double, double);
template<typename SampleType>
bool ResampleHelper<SampleType>::read_sample(SampleType& next_l, SampleType& next_r)
{
if (m_current_ratio >= m_source) {
m_current_ratio -= m_source;
next_l = m_last_sample_l;
next_r = m_last_sample_r;
return true;
}
return false;
}
template bool ResampleHelper<i32>::read_sample(i32&, i32&);
template bool ResampleHelper<double>::read_sample(double&, double&);
template<typename SampleType>
void ResampleHelper<SampleType>::reset()
{
m_current_ratio = 0;
m_last_sample_l = {};
m_last_sample_r = {};
}
template void ResampleHelper<i32>::reset();
template void ResampleHelper<double>::reset();
}