ladybird/Userland/Libraries/LibJS/Runtime/ECMAScriptFunctionObject.cpp
Idan Horowitz 681787de76 LibJS: Add support for async functions
This commit adds support for the most bare bones version of async
functions, support for async generator functions, async arrow functions
and await expressions are TODO.
2021-11-10 08:48:27 +00:00

841 lines
40 KiB
C++

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Function.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ExecutionContext.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GeneratorObject.h>
#include <LibJS/Runtime/GeneratorObjectPrototype.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/PromiseReaction.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
ECMAScriptFunctionObject* ECMAScriptFunctionObject::create(GlobalObject& global_object, FlyString name, Statement const& ecmascript_code, Vector<FunctionNode::Parameter> parameters, i32 m_function_length, Environment* parent_scope, PrivateEnvironment* private_scope, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function)
{
Object* prototype = nullptr;
switch (kind) {
case FunctionKind::Regular:
prototype = global_object.function_prototype();
break;
case FunctionKind::Generator:
prototype = global_object.generator_function_prototype();
break;
case FunctionKind::Async:
prototype = global_object.async_function_prototype();
break;
}
return global_object.heap().allocate<ECMAScriptFunctionObject>(global_object, move(name), ecmascript_code, move(parameters), m_function_length, parent_scope, private_scope, *prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function);
}
ECMAScriptFunctionObject::ECMAScriptFunctionObject(FlyString name, Statement const& ecmascript_code, Vector<FunctionNode::Parameter> formal_parameters, i32 function_length, Environment* parent_scope, PrivateEnvironment* private_scope, Object& prototype, FunctionKind kind, bool strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function)
: FunctionObject(prototype)
, m_environment(parent_scope)
, m_private_environment(private_scope)
, m_formal_parameters(move(formal_parameters))
, m_ecmascript_code(ecmascript_code)
, m_realm(global_object().associated_realm())
, m_strict(strict)
, m_name(move(name))
, m_function_length(function_length)
, m_kind(kind)
, m_might_need_arguments_object(might_need_arguments_object)
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
, m_is_arrow_function(is_arrow_function)
{
// NOTE: This logic is from OrdinaryFunctionCreate, https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
if (m_is_arrow_function)
m_this_mode = ThisMode::Lexical;
else if (m_strict)
m_this_mode = ThisMode::Strict;
else
m_this_mode = ThisMode::Global;
// 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist
m_has_simple_parameter_list = all_of(m_formal_parameters, [&](auto& parameter) {
if (parameter.is_rest)
return false;
if (parameter.default_value)
return false;
if (!parameter.binding.template has<FlyString>())
return false;
return true;
});
}
void ECMAScriptFunctionObject::initialize(GlobalObject& global_object)
{
auto& vm = this->vm();
Base::initialize(global_object);
// Note: The ordering of these properties must be: length, name, prototype which is the order
// they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances .
// This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
// which must give the properties in chronological order which in this case is the order they
// are defined in the spec.
MUST(define_property_or_throw(vm.names.length, { .value = Value(m_function_length), .writable = false, .enumerable = false, .configurable = true }));
MUST(define_property_or_throw(vm.names.name, { .value = js_string(vm, m_name.is_null() ? "" : m_name), .writable = false, .enumerable = false, .configurable = true }));
if (!m_is_arrow_function) {
auto* prototype = vm.heap().allocate<Object>(global_object, *global_object.new_ordinary_function_prototype_object_shape());
switch (m_kind) {
case FunctionKind::Regular:
MUST(prototype->define_property_or_throw(vm.names.constructor, { .value = this, .writable = true, .enumerable = false, .configurable = true }));
break;
case FunctionKind::Generator:
// prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png)
set_prototype(global_object.generator_object_prototype());
break;
case FunctionKind::Async:
break;
}
define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
}
}
ECMAScriptFunctionObject::~ECMAScriptFunctionObject()
{
}
// 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist
ThrowCompletionOr<Value> ECMAScriptFunctionObject::internal_call(Value this_argument, MarkedValueList arguments_list)
{
auto& vm = this->vm();
// 1. Let callerContext be the running execution context.
// NOTE: No-op, kept by the VM in its execution context stack.
ExecutionContext callee_context(heap());
// Non-standard
callee_context.arguments.extend(move(arguments_list));
if (auto* interpreter = vm.interpreter_if_exists())
callee_context.current_node = interpreter->current_node();
// 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
prepare_for_ordinary_call(callee_context, nullptr);
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// 3. Assert: calleeContext is now the running execution context.
VERIFY(&vm.running_execution_context() == &callee_context);
// 4. If F.[[IsClassConstructor]] is true, then
if (m_is_class_constructor) {
// a. Let error be a newly created TypeError object.
// b. NOTE: error is created in calleeContext with F's associated Realm Record.
auto throw_completion = vm.throw_completion<TypeError>(global_object(), ErrorType::ClassConstructorWithoutNew, m_name);
// c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// d. Return ThrowCompletion(error).
return throw_completion;
}
// 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
ordinary_call_bind_this(callee_context, this_argument);
// 6. Let result be OrdinaryCallEvaluateBody(F, argumentsList).
auto result = ordinary_call_evaluate_body();
// 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// 8. If result.[[Type]] is return, return NormalCompletion(result.[[Value]]).
if (result.type() == Completion::Type::Return)
return result.value();
// 9. ReturnIfAbrupt(result).
if (result.is_abrupt()) {
// NOTE: I'm not sure if EvaluateBody can return a completion other than Normal, Return, or Throw.
// We're far from using completions in the AST anyway; in the meantime assume Throw.
VERIFY(result.is_error());
return result;
}
// 10. Return NormalCompletion(undefined).
return js_undefined();
}
// 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
ThrowCompletionOr<Object*> ECMAScriptFunctionObject::internal_construct(MarkedValueList arguments_list, FunctionObject& new_target)
{
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Let callerContext be the running execution context.
// NOTE: No-op, kept by the VM in its execution context stack.
// 2. Let kind be F.[[ConstructorKind]].
auto kind = m_constructor_kind;
Object* this_argument = nullptr;
// 3. If kind is base, then
if (kind == ConstructorKind::Base) {
// a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%").
this_argument = TRY(ordinary_create_from_constructor<Object>(global_object, new_target, &GlobalObject::object_prototype));
}
ExecutionContext callee_context(heap());
// Non-standard
callee_context.arguments.extend(move(arguments_list));
if (auto* interpreter = vm.interpreter_if_exists())
callee_context.current_node = interpreter->current_node();
// 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
prepare_for_ordinary_call(callee_context, &new_target);
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// 5. Assert: calleeContext is now the running execution context.
VERIFY(&vm.running_execution_context() == &callee_context);
// 6. If kind is base, then
if (kind == ConstructorKind::Base) {
// a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
ordinary_call_bind_this(callee_context, this_argument);
// b. Let initializeResult be InitializeInstanceElements(thisArgument, F).
auto initialize_result = vm.initialize_instance_elements(*this_argument, *this);
// c. If initializeResult is an abrupt completion, then
if (initialize_result.is_throw_completion()) {
// i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// ii. Return Completion(initializeResult).
return initialize_result.throw_completion();
}
}
// 7. Let constructorEnv be the LexicalEnvironment of calleeContext.
auto* constructor_env = callee_context.lexical_environment;
// 8. Let result be OrdinaryCallEvaluateBody(F, argumentsList).
auto result = ordinary_call_evaluate_body();
// 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
vm.pop_execution_context();
// 10. If result.[[Type]] is return, then
if (result.type() == Completion::Type::Return) {
// FIXME: This is leftover from untangling the call/construct mess - doesn't belong here in any way, but removing it breaks derived classes.
// Likely fixed by making ClassDefinitionEvaluation fully spec compliant.
if (kind == ConstructorKind::Derived && result.value().is_object()) {
auto prototype = TRY(new_target.get(vm.names.prototype));
if (prototype.is_object())
TRY(result.value().as_object().internal_set_prototype_of(&prototype.as_object()));
}
// EOF (End of FIXME)
// a. If Type(result.[[Value]]) is Object, return NormalCompletion(result.[[Value]]).
if (result.value().is_object())
return &result.value().as_object();
// b. If kind is base, return NormalCompletion(thisArgument).
if (kind == ConstructorKind::Base)
return this_argument;
// c. If result.[[Value]] is not undefined, throw a TypeError exception.
if (!result.value().is_undefined())
return vm.throw_completion<TypeError>(global_object, ErrorType::DerivedConstructorReturningInvalidValue);
}
// 11. Else, ReturnIfAbrupt(result).
else {
// NOTE: I'm not sure if EvaluateBody can return a completion other than Normal, Return, or Throw.
// We're far from using completions in the AST anyway; in the meantime assume Throw.
VERIFY(result.is_error());
return result;
}
// 12. Return ? constructorEnv.GetThisBinding().
auto this_binding = TRY(constructor_env->get_this_binding(global_object));
return &this_binding.as_object();
}
void ECMAScriptFunctionObject::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_environment);
visitor.visit(m_realm);
visitor.visit(m_home_object);
for (auto& field : m_fields) {
if (auto* property_name_ptr = field.name.get_pointer<PropertyKey>(); property_name_ptr && property_name_ptr->is_symbol())
visitor.visit(property_name_ptr->as_symbol());
visitor.visit(field.initializer);
}
}
// 10.2.11 FunctionDeclarationInstantiation ( func, argumentsList ), https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
ThrowCompletionOr<void> ECMAScriptFunctionObject::function_declaration_instantiation(Interpreter* interpreter)
{
auto& vm = this->vm();
auto& callee_context = vm.running_execution_context();
// Needed to extract declarations and functions
ScopeNode const* scope_body = nullptr;
if (is<ScopeNode>(*m_ecmascript_code))
scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());
bool has_parameter_expressions = false;
// FIXME: Maybe compute has duplicates at parse time? (We need to anyway since it's an error in some cases)
bool has_duplicates = false;
HashTable<FlyString> parameter_names;
for (auto& parameter : m_formal_parameters) {
if (parameter.default_value)
has_parameter_expressions = true;
parameter.binding.visit(
[&](FlyString const& name) {
if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry)
has_duplicates = true;
},
[&](NonnullRefPtr<BindingPattern> const& pattern) {
if (pattern->contains_expression())
has_parameter_expressions = true;
pattern->for_each_bound_name([&](auto& name) {
if (parameter_names.set(name) != AK::HashSetResult::InsertedNewEntry)
has_duplicates = true;
});
});
}
auto arguments_object_needed = m_might_need_arguments_object;
if (this_mode() == ThisMode::Lexical)
arguments_object_needed = false;
if (parameter_names.contains(vm.names.arguments.as_string()))
arguments_object_needed = false;
HashTable<FlyString> function_names;
Vector<FunctionDeclaration const&> functions_to_initialize;
if (scope_body) {
scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry)
functions_to_initialize.append(function);
});
auto const& arguments_name = vm.names.arguments.as_string();
if (!has_parameter_expressions && function_names.contains(arguments_name))
arguments_object_needed = false;
if (!has_parameter_expressions && arguments_object_needed) {
scope_body->for_each_lexically_declared_name([&](auto const& name) {
if (name == arguments_name) {
arguments_object_needed = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
} else {
arguments_object_needed = false;
}
Environment* environment;
if (is_strict_mode() || !has_parameter_expressions) {
environment = callee_context.lexical_environment;
} else {
environment = new_declarative_environment(*callee_context.lexical_environment);
VERIFY(callee_context.variable_environment == callee_context.lexical_environment);
callee_context.lexical_environment = environment;
}
for (auto const& parameter_name : parameter_names) {
if (MUST(environment->has_binding(parameter_name)))
continue;
MUST(environment->create_mutable_binding(global_object(), parameter_name, false));
if (has_duplicates)
MUST(environment->initialize_binding(global_object(), parameter_name, js_undefined()));
}
if (arguments_object_needed) {
Object* arguments_object;
if (is_strict_mode() || !has_simple_parameter_list())
arguments_object = create_unmapped_arguments_object(global_object(), vm.running_execution_context().arguments);
else
arguments_object = create_mapped_arguments_object(global_object(), *this, formal_parameters(), vm.running_execution_context().arguments, *environment);
if (is_strict_mode())
MUST(environment->create_immutable_binding(global_object(), vm.names.arguments.as_string(), false));
else
MUST(environment->create_mutable_binding(global_object(), vm.names.arguments.as_string(), false));
MUST(environment->initialize_binding(global_object(), vm.names.arguments.as_string(), arguments_object));
parameter_names.set(vm.names.arguments.as_string());
}
// We now treat parameterBindings as parameterNames.
// The spec makes an iterator here to do IteratorBindingInitialization but we just do it manually
auto& execution_context_arguments = vm.running_execution_context().arguments;
for (size_t i = 0; i < m_formal_parameters.size(); ++i) {
auto& parameter = m_formal_parameters[i];
TRY(parameter.binding.visit(
[&](auto const& param) -> ThrowCompletionOr<void> {
Value argument_value;
if (parameter.is_rest) {
auto* array = MUST(Array::create(global_object(), 0));
for (size_t rest_index = i; rest_index < execution_context_arguments.size(); ++rest_index)
array->indexed_properties().append(execution_context_arguments[rest_index]);
argument_value = array;
} else if (i < execution_context_arguments.size() && !execution_context_arguments[i].is_undefined()) {
argument_value = execution_context_arguments[i];
} else if (parameter.default_value) {
// FIXME: Support default arguments in the bytecode world!
if (interpreter)
argument_value = parameter.default_value->execute(*interpreter, global_object());
if (auto* exception = vm.exception())
return throw_completion(exception->value());
} else {
argument_value = js_undefined();
}
Environment* used_environment = has_duplicates ? nullptr : environment;
if constexpr (IsSame<FlyString const&, decltype(param)>) {
Reference reference = vm.resolve_binding(param, used_environment);
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// Here the difference from hasDuplicates is important
if (has_duplicates)
return reference.put_value(global_object(), argument_value);
else
return reference.initialize_referenced_binding(global_object(), argument_value);
} else if (IsSame<NonnullRefPtr<BindingPattern> const&, decltype(param)>) {
// Here the difference from hasDuplicates is important
return vm.binding_initialization(param, argument_value, used_environment, global_object());
}
}));
}
Environment* var_environment;
HashTable<FlyString> instantiated_var_names;
if (scope_body)
instantiated_var_names.ensure_capacity(scope_body->var_declaration_count());
if (!has_parameter_expressions) {
if (scope_body) {
scope_body->for_each_var_declared_name([&](auto const& name) {
if (!parameter_names.contains(name) && instantiated_var_names.set(name) == AK::HashSetResult::InsertedNewEntry) {
MUST(environment->create_mutable_binding(global_object(), name, false));
MUST(environment->initialize_binding(global_object(), name, js_undefined()));
}
});
}
var_environment = environment;
} else {
var_environment = new_declarative_environment(*environment);
callee_context.variable_environment = var_environment;
if (scope_body) {
scope_body->for_each_var_declared_name([&](auto const& name) {
if (instantiated_var_names.set(name) != AK::HashSetResult::InsertedNewEntry)
return IterationDecision::Continue;
MUST(var_environment->create_mutable_binding(global_object(), name, false));
Value initial_value;
if (!parameter_names.contains(name) || function_names.contains(name))
initial_value = js_undefined();
else
initial_value = MUST(environment->get_binding_value(global_object(), name, false));
MUST(var_environment->initialize_binding(global_object(), name, initial_value));
return IterationDecision::Continue;
});
}
}
// B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
if (!m_strict && scope_body) {
scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
auto& function_name = function_declaration.name();
if (parameter_names.contains(function_name))
return IterationDecision::Continue;
// The spec says 'initializedBindings' here but that does not exist and it then adds it to 'instantiatedVarNames' so it probably means 'instantiatedVarNames'.
if (!instantiated_var_names.contains(function_name) && function_name != vm.names.arguments.as_string()) {
MUST(var_environment->create_mutable_binding(global_object(), function_name, false));
MUST(var_environment->initialize_binding(global_object(), function_name, js_undefined()));
instantiated_var_names.set(function_name);
}
function_declaration.set_should_do_additional_annexB_steps();
return IterationDecision::Continue;
});
}
Environment* lex_environment;
// 30. If strict is false, then
if (!is_strict_mode()) {
// Optimization: We avoid creating empty top-level declarative environments in non-strict mode, if both of these conditions are true:
// 1. there is no direct call to eval() within this function
// 2. there are no lexical declarations that would go into the environment
bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_lexical_declarations());
if (can_elide_declarative_environment) {
lex_environment = var_environment;
} else {
// a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
// b. NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that a direct eval
// can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level
// lexically scoped declarations. This is not needed for strict functions because a strict direct eval always places
// all declarations into a new Environment Record.
lex_environment = new_declarative_environment(*var_environment);
}
} else {
// 31. Else, let lexEnv be varEnv.
lex_environment = var_environment;
}
// 32. Set the LexicalEnvironment of calleeContext to lexEnv.
callee_context.lexical_environment = lex_environment;
if (!scope_body)
return {};
scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
declaration.for_each_bound_name([&](auto const& name) {
if (declaration.is_constant_declaration())
MUST(lex_environment->create_immutable_binding(global_object(), name, true));
else
MUST(lex_environment->create_mutable_binding(global_object(), name, false));
return IterationDecision::Continue;
});
});
VERIFY(!vm.exception());
auto* private_environment = callee_context.private_environment;
for (auto& declaration : functions_to_initialize) {
auto* function = ECMAScriptFunctionObject::create(global_object(), declaration.name(), declaration.body(), declaration.parameters(), declaration.function_length(), lex_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
MUST(var_environment->set_mutable_binding(global_object(), declaration.name(), function, false));
}
return {};
}
// 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall
void ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target)
{
auto& vm = this->vm();
// Non-standard
callee_context.is_strict_mode = m_strict;
// 1. Let callerContext be the running execution context.
// 2. Let calleeContext be a new ECMAScript code execution context.
// NOTE: In the specification, PrepareForOrdinaryCall "returns" a new callee execution context.
// To avoid heap allocations, we put our ExecutionContext objects on the C++ stack instead.
// Whoever calls us should put an ExecutionContext on their stack and pass that as the `callee_context`.
// 3. Set the Function of calleeContext to F.
callee_context.function = this;
callee_context.function_name = m_name;
// 4. Let calleeRealm be F.[[Realm]].
auto* callee_realm = m_realm;
// NOTE: This non-standard fallback is needed until we can guarantee that literally
// every function has a realm - especially in LibWeb that's sometimes not the case
// when a function is created while no JS is running, as we currently need to rely on
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
// If there's no 'current realm' either, we can't continue and crash.
if (!callee_realm)
callee_realm = vm.current_realm();
VERIFY(callee_realm);
// 5. Set the Realm of calleeContext to calleeRealm.
callee_context.realm = callee_realm;
// 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
// FIXME: Our execution context struct currently does not track this item.
// 7. Let localEnv be NewFunctionEnvironment(F, newTarget).
auto* local_environment = new_function_environment(*this, new_target);
// 8. Set the LexicalEnvironment of calleeContext to localEnv.
callee_context.lexical_environment = local_environment;
// 9. Set the VariableEnvironment of calleeContext to localEnv.
callee_context.variable_environment = local_environment;
// 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]].
callee_context.private_environment = m_private_environment;
// 11. If callerContext is not already suspended, suspend callerContext.
// FIXME: We don't have this concept yet.
// 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
vm.push_execution_context(callee_context, global_object());
// 13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
// 14. Return calleeContext. (See NOTE above about how contexts are allocated on the C++ stack.)
}
// 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis
void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument)
{
auto& vm = this->vm();
// 1. Let thisMode be F.[[ThisMode]].
auto this_mode = m_this_mode;
// If thisMode is lexical, return NormalCompletion(undefined).
if (this_mode == ThisMode::Lexical)
return;
// 3. Let calleeRealm be F.[[Realm]].
auto* callee_realm = m_realm;
// NOTE: This non-standard fallback is needed until we can guarantee that literally
// every function has a realm - especially in LibWeb that's sometimes not the case
// when a function is created while no JS is running, as we currently need to rely on
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
// If there's no 'current realm' either, we can't continue and crash.
if (!callee_realm)
callee_realm = vm.current_realm();
VERIFY(callee_realm);
// 4. Let localEnv be the LexicalEnvironment of calleeContext.
auto* local_env = callee_context.lexical_environment;
Value this_value;
// 5. If thisMode is strict, let thisValue be thisArgument.
if (this_mode == ThisMode::Strict) {
this_value = this_argument;
}
// 6. Else,
else {
// a. If thisArgument is undefined or null, then
if (this_argument.is_nullish()) {
// i. Let globalEnv be calleeRealm.[[GlobalEnv]].
// ii. Assert: globalEnv is a global Environment Record.
auto& global_env = callee_realm->global_environment();
// iii. Let thisValue be globalEnv.[[GlobalThisValue]].
this_value = &global_env.global_this_value();
}
// b. Else,
else {
// i. Let thisValue be ! ToObject(thisArgument).
this_value = MUST(this_argument.to_object(global_object()));
// ii. NOTE: ToObject produces wrapper objects using calleeRealm.
// FIXME: It currently doesn't, as we pass the function's global object.
}
}
// 7. Assert: localEnv is a function Environment Record.
// 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized.
// 9. Return localEnv.BindThisValue(thisValue).
MUST(verify_cast<FunctionEnvironment>(local_env)->bind_this_value(global_object(), this_value));
}
// 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start
void ECMAScriptFunctionObject::async_function_start(PromiseCapability const& promise_capability)
{
auto& vm = this->vm();
// 1. Let runningContext be the running execution context.
auto& running_context = vm.running_execution_context();
// 2. Let asyncContext be a copy of runningContext.
auto async_context = running_context.copy();
// 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.
// 4. Perform ! AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext).
async_block_start(promise_capability, async_context);
}
// 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart
void ECMAScriptFunctionObject::async_block_start(PromiseCapability const& promise_capability, ExecutionContext& async_context)
{
auto& vm = this->vm();
// 1. Assert: promiseCapability is a PromiseCapability Record.
// 2. Let runningContext be the running execution context.
auto& running_context = vm.running_execution_context();
// 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the following steps will be performed:
auto* execution_steps = NativeFunction::create(global_object(), "", [async_body = m_ecmascript_code, &promise_capability](auto& vm, auto& global_object) -> ThrowCompletionOr<Value> {
// a. Let result be the result of evaluating asyncBody.
auto result = async_body->execute(vm.interpreter(), global_object);
// b. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
// c. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context.
vm.pop_execution_context();
// NOTE: Running the AST node should eventually return a completion.
// Until it does, we assume "return" and include the undefined fallback from the call site.
// d. If result.[[Type]] is normal, then
if (false) {
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
MUST(call(global_object, promise_capability.resolve, js_undefined(), js_undefined()));
}
// e. Else if result.[[Type]] is return, then
else if (!vm.exception()) {
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
MUST(call(global_object, promise_capability.resolve, js_undefined(), result.value_or(js_undefined())));
}
// f. Else,
else {
// i. Assert: result.[[Type]] is throw.
// ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).
auto reason = vm.exception()->value();
vm.clear_exception();
vm.stop_unwind();
MUST(call(global_object, promise_capability.reject, js_undefined(), reason));
}
// g. Return.
return js_undefined();
});
// 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
vm.push_execution_context(async_context, global_object());
// 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
auto result = vm.call(*execution_steps, async_context.this_value.is_empty() ? js_undefined() : async_context.this_value);
// 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context.
VERIFY(&vm.running_execution_context() == &running_context);
// 7. Assert: result is a normal completion with a value of undefined. The possible sources of completion values are Await or, if the async function doesn't await anything, step 3.g above.
VERIFY(result.has_value() && result.value().is_undefined());
// 8. Return.
}
// 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody
Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body()
{
auto& vm = this->vm();
auto* bytecode_interpreter = Bytecode::Interpreter::current();
if (bytecode_interpreter) {
if (m_kind == FunctionKind::Async)
return vm.throw_completion<InternalError>(global_object(), ErrorType::NotImplemented, "Async function execution in Bytecode interpreter");
// FIXME: pass something to evaluate default arguments with
TRY(function_declaration_instantiation(nullptr));
if (!m_bytecode_executable.has_value()) {
m_bytecode_executable = Bytecode::Generator::generate(m_ecmascript_code, m_kind == FunctionKind::Generator);
m_bytecode_executable->name = m_name;
auto& passes = JS::Bytecode::Interpreter::optimization_pipeline();
passes.perform(*m_bytecode_executable);
if constexpr (JS_BYTECODE_DEBUG) {
dbgln("Optimisation passes took {}us", passes.elapsed());
dbgln("Compiled Bytecode::Block for function '{}':", m_name);
}
if (JS::Bytecode::g_dump_bytecode)
m_bytecode_executable->dump();
}
auto result = bytecode_interpreter->run(*m_bytecode_executable);
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// NOTE: Running the bytecode should eventually return a completion.
// Until it does, we assume "return" and include the undefined fallback from the call site.
if (m_kind != FunctionKind::Generator)
return { Completion::Type::Return, result.value_or(js_undefined()), {} };
return normal_completion(TRY(GeneratorObject::create(global_object(), result, this, vm.running_execution_context().lexical_environment, bytecode_interpreter->snapshot_frame())));
} else {
if (m_kind == FunctionKind::Generator)
return vm.throw_completion<InternalError>(global_object(), ErrorType::NotImplemented, "Generator function execution in AST interpreter");
OwnPtr<Interpreter> local_interpreter;
Interpreter* ast_interpreter = vm.interpreter_if_exists();
if (!ast_interpreter) {
local_interpreter = Interpreter::create_with_existing_realm(*realm());
ast_interpreter = local_interpreter.ptr();
}
VM::InterpreterExecutionScope scope(*ast_interpreter);
if (m_kind == FunctionKind::Regular) {
TRY(function_declaration_instantiation(ast_interpreter));
auto result = m_ecmascript_code->execute(*ast_interpreter, global_object());
if (auto* exception = vm.exception())
return throw_completion(exception->value());
// NOTE: Running the AST node should eventually return a completion.
// Until it does, we assume "return" and include the undefined fallback from the call site.
return { Completion::Type::Return, result.value_or(js_undefined()), {} };
} else if (m_kind == FunctionKind::Async) {
// 1. Let promiseCapability be ! NewPromiseCapability(%Promise%).
auto promise_capability = MUST(new_promise_capability(global_object(), global_object().promise_constructor()));
// 2. Let declResult be FunctionDeclarationInstantiation(functionObject, argumentsList).
auto declaration_result = function_declaration_instantiation(ast_interpreter);
// 3. If declResult is not an abrupt completion, then
if (!declaration_result.is_throw_completion() || !declaration_result.throw_completion().is_abrupt()) {
// a. Perform ! AsyncFunctionStart(promiseCapability, FunctionBody).
async_function_start(promise_capability);
}
// 4. Else,
else {
// a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »).
MUST(call(global_object(), promise_capability.reject, js_undefined(), declaration_result.throw_completion().value()));
}
// 5. Return Completion { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }.
return Completion { Completion::Type::Return, promise_capability.promise, {} };
}
}
VERIFY_NOT_REACHED();
}
void ECMAScriptFunctionObject::set_name(const FlyString& name)
{
VERIFY(!name.is_null());
auto& vm = this->vm();
m_name = name;
auto success = MUST(define_property_or_throw(vm.names.name, { .value = js_string(vm, m_name), .writable = false, .enumerable = false, .configurable = true }));
VERIFY(success);
}
void ECMAScriptFunctionObject::add_field(ClassElement::ClassElementName property_key, ECMAScriptFunctionObject* initializer)
{
m_fields.empend(property_key, initializer);
}
}