ladybird/Userland/Libraries/LibWeb/CSS/StyleValues/CalculatedStyleValue.cpp
Andreas Kling 655d9d1462 LibWeb: Make CSSPixels and Length use 64-bit (double) floating point
This fixes a plethora of rounding problems on many websites.
In the future, we may want to replace this with fixed-point arithmetic
(bug #18566) for performance (and consistency with other engines),
but in the meantime this makes the web look a bit better. :^)

There's a lot more things that could be converted to doubles, which
would reduce the amount of casting necessary in this patch.
We can do that incrementally, however.
2023-05-24 14:40:35 +02:00

769 lines
27 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
* Copyright (c) 2021-2023, Sam Atkins <atkinssj@serenityos.org>
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "CalculatedStyleValue.h"
#include <LibWeb/CSS/Percentage.h>
namespace Web::CSS {
static bool is_number(CalculatedStyleValue::ResolvedType type)
{
return type == CalculatedStyleValue::ResolvedType::Number || type == CalculatedStyleValue::ResolvedType::Integer;
}
static bool is_dimension(CalculatedStyleValue::ResolvedType type)
{
return type != CalculatedStyleValue::ResolvedType::Number
&& type != CalculatedStyleValue::ResolvedType::Integer
&& type != CalculatedStyleValue::ResolvedType::Percentage;
}
CalculationNode::CalculationNode(Type type)
: m_type(type)
{
}
CalculationNode::~CalculationNode() = default;
ErrorOr<NonnullOwnPtr<NumericCalculationNode>> NumericCalculationNode::create(NumericValue value)
{
return adopt_nonnull_own_or_enomem(new (nothrow) NumericCalculationNode(move(value)));
}
NumericCalculationNode::NumericCalculationNode(NumericValue value)
: CalculationNode(Type::Numeric)
, m_value(move(value))
{
}
NumericCalculationNode::~NumericCalculationNode() = default;
ErrorOr<String> NumericCalculationNode::to_string() const
{
return m_value.visit([](auto& value) { return value.to_string(); });
}
Optional<CalculatedStyleValue::ResolvedType> NumericCalculationNode::resolved_type() const
{
return m_value.visit(
[](Number const&) { return CalculatedStyleValue::ResolvedType::Number; },
[](Angle const&) { return CalculatedStyleValue::ResolvedType::Angle; },
[](Frequency const&) { return CalculatedStyleValue::ResolvedType::Frequency; },
[](Length const&) { return CalculatedStyleValue::ResolvedType::Length; },
[](Percentage const&) { return CalculatedStyleValue::ResolvedType::Percentage; },
[](Time const&) { return CalculatedStyleValue::ResolvedType::Time; });
}
bool NumericCalculationNode::contains_percentage() const
{
return m_value.has<Percentage>();
}
CalculatedStyleValue::CalculationResult NumericCalculationNode::resolve(Layout::Node const*, CalculatedStyleValue::PercentageBasis const&) const
{
return m_value;
}
ErrorOr<void> NumericCalculationNode::dump(StringBuilder& builder, int indent) const
{
return builder.try_appendff("{: >{}}NUMERIC({})\n", "", indent, TRY(m_value.visit([](auto& it) { return it.to_string(); })));
}
ErrorOr<NonnullOwnPtr<SumCalculationNode>> SumCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
return adopt_nonnull_own_or_enomem(new (nothrow) SumCalculationNode(move(values)));
}
SumCalculationNode::SumCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Sum)
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
SumCalculationNode::~SumCalculationNode() = default;
ErrorOr<String> SumCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
TRY(builder.try_append(" + "sv));
TRY(builder.try_append(TRY(value->to_string())));
first = false;
}
return builder.to_string();
}
Optional<CalculatedStyleValue::ResolvedType> SumCalculationNode::resolved_type() const
{
// FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// For now, this is just ad-hoc, based on the old implementation.
Optional<CalculatedStyleValue::ResolvedType> type;
for (auto const& value : m_values) {
auto maybe_value_type = value->resolved_type();
if (!maybe_value_type.has_value())
return {};
auto value_type = maybe_value_type.value();
if (!type.has_value()) {
type = value_type;
continue;
}
// At + or -, check that both sides have the same type, or that one side is a <number> and the other is an <integer>.
// If both sides are the same type, resolve to that type.
if (value_type == type)
continue;
// If one side is a <number> and the other is an <integer>, resolve to <number>.
if (is_number(*type) && is_number(value_type)) {
type = CalculatedStyleValue::ResolvedType::Number;
continue;
}
// FIXME: calc() handles <percentage> by allowing them to pretend to be whatever <dimension> type is allowed at this location.
// Since we can't easily check what that type is, we just allow <percentage> to combine with any other <dimension> type.
if (type == CalculatedStyleValue::ResolvedType::Percentage && is_dimension(value_type)) {
type = value_type;
continue;
}
if (is_dimension(*type) && value_type == CalculatedStyleValue::ResolvedType::Percentage)
continue;
return {};
}
return type;
}
bool SumCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult SumCalculationNode::resolve(Layout::Node const* layout_node, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(layout_node, percentage_basis);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->add(additional_value, layout_node, percentage_basis);
}
return total.value();
}
ErrorOr<void> SumCalculationNode::for_each_child_node(Function<ErrorOr<void>(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& item : m_values) {
TRY(item->for_each_child_node(callback));
TRY(callback(item));
}
return {};
}
ErrorOr<void> SumCalculationNode::dump(StringBuilder& builder, int indent) const
{
TRY(builder.try_appendff("{: >{}}SUM:\n", "", indent));
for (auto const& item : m_values)
TRY(item->dump(builder, indent + 2));
return {};
}
ErrorOr<NonnullOwnPtr<ProductCalculationNode>> ProductCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
return adopt_nonnull_own_or_enomem(new (nothrow) ProductCalculationNode(move(values)));
}
ProductCalculationNode::ProductCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Product)
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
ProductCalculationNode::~ProductCalculationNode() = default;
ErrorOr<String> ProductCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
TRY(builder.try_append(" * "sv));
TRY(builder.try_append(TRY(value->to_string())));
first = false;
}
return builder.to_string();
}
Optional<CalculatedStyleValue::ResolvedType> ProductCalculationNode::resolved_type() const
{
// FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// For now, this is just ad-hoc, based on the old implementation.
Optional<CalculatedStyleValue::ResolvedType> type;
for (auto const& value : m_values) {
auto maybe_value_type = value->resolved_type();
if (!maybe_value_type.has_value())
return {};
auto value_type = maybe_value_type.value();
if (!type.has_value()) {
type = value_type;
continue;
}
// At *, check that at least one side is <number>.
if (!(is_number(*type) || is_number(value_type)))
return {};
// If both sides are <integer>, resolve to <integer>.
if (type == CalculatedStyleValue::ResolvedType::Integer && value_type == CalculatedStyleValue::ResolvedType::Integer) {
type = CalculatedStyleValue::ResolvedType::Integer;
} else {
// Otherwise, resolve to the type of the other side.
if (is_number(*type))
type = value_type;
}
}
return type;
}
bool ProductCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult ProductCalculationNode::resolve(Layout::Node const* layout_node, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(layout_node, percentage_basis);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->multiply_by(additional_value, layout_node);
}
return total.value();
}
ErrorOr<void> ProductCalculationNode::for_each_child_node(Function<ErrorOr<void>(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& item : m_values) {
TRY(item->for_each_child_node(callback));
TRY(callback(item));
}
return {};
}
ErrorOr<void> ProductCalculationNode::dump(StringBuilder& builder, int indent) const
{
TRY(builder.try_appendff("{: >{}}PRODUCT:\n", "", indent));
for (auto const& item : m_values)
TRY(item->dump(builder, indent + 2));
return {};
}
ErrorOr<NonnullOwnPtr<NegateCalculationNode>> NegateCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value)
{
return adopt_nonnull_own_or_enomem(new (nothrow) NegateCalculationNode(move(value)));
}
NegateCalculationNode::NegateCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Negate)
, m_value(move(value))
{
}
NegateCalculationNode::~NegateCalculationNode() = default;
ErrorOr<String> NegateCalculationNode::to_string() const
{
return String::formatted("(0 - {})", TRY(m_value->to_string()));
}
Optional<CalculatedStyleValue::ResolvedType> NegateCalculationNode::resolved_type() const
{
return m_value->resolved_type();
}
bool NegateCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult NegateCalculationNode::resolve(Layout::Node const* layout_node, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto child_value = m_value->resolve(layout_node, percentage_basis);
child_value.negate();
return child_value;
}
ErrorOr<void> NegateCalculationNode::for_each_child_node(Function<ErrorOr<void>(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
TRY(m_value->for_each_child_node(callback));
TRY(callback(m_value));
return {};
}
ErrorOr<void> NegateCalculationNode::dump(StringBuilder& builder, int indent) const
{
TRY(builder.try_appendff("{: >{}}NEGATE:\n", "", indent));
TRY(m_value->dump(builder, indent + 2));
return {};
}
ErrorOr<NonnullOwnPtr<InvertCalculationNode>> InvertCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value)
{
return adopt_nonnull_own_or_enomem(new (nothrow) InvertCalculationNode(move(value)));
}
InvertCalculationNode::InvertCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Invert)
, m_value(move(value))
{
}
InvertCalculationNode::~InvertCalculationNode() = default;
ErrorOr<String> InvertCalculationNode::to_string() const
{
return String::formatted("(1 / {})", TRY(m_value->to_string()));
}
Optional<CalculatedStyleValue::ResolvedType> InvertCalculationNode::resolved_type() const
{
auto type = m_value->resolved_type();
if (type == CalculatedStyleValue::ResolvedType::Integer)
return CalculatedStyleValue::ResolvedType::Number;
return type;
}
bool InvertCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult InvertCalculationNode::resolve(Layout::Node const* layout_node, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto child_value = m_value->resolve(layout_node, percentage_basis);
child_value.invert();
return child_value;
}
ErrorOr<void> InvertCalculationNode::for_each_child_node(Function<ErrorOr<void>(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
TRY(m_value->for_each_child_node(callback));
TRY(callback(m_value));
return {};
}
ErrorOr<void> InvertCalculationNode::dump(StringBuilder& builder, int indent) const
{
TRY(builder.try_appendff("{: >{}}INVERT:\n", "", indent));
TRY(m_value->dump(builder, indent + 2));
return {};
}
void CalculatedStyleValue::CalculationResult::add(CalculationResult const& other, Layout::Node const* layout_node, PercentageBasis const& percentage_basis)
{
add_or_subtract_internal(SumOperation::Add, other, layout_node, percentage_basis);
}
void CalculatedStyleValue::CalculationResult::subtract(CalculationResult const& other, Layout::Node const* layout_node, PercentageBasis const& percentage_basis)
{
add_or_subtract_internal(SumOperation::Subtract, other, layout_node, percentage_basis);
}
void CalculatedStyleValue::CalculationResult::add_or_subtract_internal(SumOperation op, CalculationResult const& other, Layout::Node const* layout_node, PercentageBasis const& percentage_basis)
{
// We know from validation when resolving the type, that "both sides have the same type, or that one side is a <number> and the other is an <integer>".
// Though, having the same type may mean that one side is a <dimension> and the other a <percentage>.
// Note: This is almost identical to ::add()
m_value.visit(
[&](Number const& number) {
auto other_number = other.m_value.get<Number>();
if (op == SumOperation::Add) {
m_value = number + other_number;
} else {
m_value = number - other_number;
}
},
[&](Angle const& angle) {
auto this_degrees = angle.to_degrees();
if (other.m_value.has<Angle>()) {
auto other_degrees = other.m_value.get<Angle>().to_degrees();
if (op == SumOperation::Add)
m_value = Angle::make_degrees(this_degrees + other_degrees);
else
m_value = Angle::make_degrees(this_degrees - other_degrees);
} else {
VERIFY(percentage_basis.has<Angle>());
auto other_degrees = percentage_basis.get<Angle>().percentage_of(other.m_value.get<Percentage>()).to_degrees();
if (op == SumOperation::Add)
m_value = Angle::make_degrees(this_degrees + other_degrees);
else
m_value = Angle::make_degrees(this_degrees - other_degrees);
}
},
[&](Frequency const& frequency) {
auto this_hertz = frequency.to_hertz();
if (other.m_value.has<Frequency>()) {
auto other_hertz = other.m_value.get<Frequency>().to_hertz();
if (op == SumOperation::Add)
m_value = Frequency::make_hertz(this_hertz + other_hertz);
else
m_value = Frequency::make_hertz(this_hertz - other_hertz);
} else {
VERIFY(percentage_basis.has<Frequency>());
auto other_hertz = percentage_basis.get<Frequency>().percentage_of(other.m_value.get<Percentage>()).to_hertz();
if (op == SumOperation::Add)
m_value = Frequency::make_hertz(this_hertz + other_hertz);
else
m_value = Frequency::make_hertz(this_hertz - other_hertz);
}
},
[&](Length const& length) {
auto this_px = length.to_px(*layout_node);
if (other.m_value.has<Length>()) {
auto other_px = other.m_value.get<Length>().to_px(*layout_node);
if (op == SumOperation::Add)
m_value = Length::make_px(this_px + other_px);
else
m_value = Length::make_px(this_px - other_px);
} else {
VERIFY(percentage_basis.has<Length>());
auto other_px = percentage_basis.get<Length>().percentage_of(other.m_value.get<Percentage>()).to_px(*layout_node);
if (op == SumOperation::Add)
m_value = Length::make_px(this_px + other_px);
else
m_value = Length::make_px(this_px - other_px);
}
},
[&](Time const& time) {
auto this_seconds = time.to_seconds();
if (other.m_value.has<Time>()) {
auto other_seconds = other.m_value.get<Time>().to_seconds();
if (op == SumOperation::Add)
m_value = Time::make_seconds(this_seconds + other_seconds);
else
m_value = Time::make_seconds(this_seconds - other_seconds);
} else {
VERIFY(percentage_basis.has<Time>());
auto other_seconds = percentage_basis.get<Time>().percentage_of(other.m_value.get<Percentage>()).to_seconds();
if (op == SumOperation::Add)
m_value = Time::make_seconds(this_seconds + other_seconds);
else
m_value = Time::make_seconds(this_seconds - other_seconds);
}
},
[&](Percentage const& percentage) {
if (other.m_value.has<Percentage>()) {
if (op == SumOperation::Add)
m_value = Percentage { percentage.value() + other.m_value.get<Percentage>().value() };
else
m_value = Percentage { percentage.value() - other.m_value.get<Percentage>().value() };
return;
}
// Other side isn't a percentage, so the easiest way to handle it without duplicating all the logic, is just to swap `this` and `other`.
CalculationResult new_value = other;
if (op == SumOperation::Add) {
new_value.add(*this, layout_node, percentage_basis);
} else {
// Turn 'this - other' into '-other + this', as 'A + B == B + A', but 'A - B != B - A'
new_value.multiply_by({ Number { Number::Type::Integer, -1.0f } }, layout_node);
new_value.add(*this, layout_node, percentage_basis);
}
*this = new_value;
});
}
void CalculatedStyleValue::CalculationResult::multiply_by(CalculationResult const& other, Layout::Node const* layout_node)
{
// We know from validation when resolving the type, that at least one side must be a <number> or <integer>.
// Both of these are represented as a float.
VERIFY(m_value.has<Number>() || other.m_value.has<Number>());
bool other_is_number = other.m_value.has<Number>();
m_value.visit(
[&](Number const& number) {
if (other_is_number) {
m_value = number * other.m_value.get<Number>();
} else {
// Avoid duplicating all the logic by swapping `this` and `other`.
CalculationResult new_value = other;
new_value.multiply_by(*this, layout_node);
*this = new_value;
}
},
[&](Angle const& angle) {
m_value = Angle::make_degrees(angle.to_degrees() * other.m_value.get<Number>().value());
},
[&](Frequency const& frequency) {
m_value = Frequency::make_hertz(frequency.to_hertz() * other.m_value.get<Number>().value());
},
[&](Length const& length) {
VERIFY(layout_node);
m_value = Length::make_px(length.to_px(*layout_node) * static_cast<double>(other.m_value.get<Number>().value()));
},
[&](Time const& time) {
m_value = Time::make_seconds(time.to_seconds() * other.m_value.get<Number>().value());
},
[&](Percentage const& percentage) {
m_value = Percentage { percentage.value() * other.m_value.get<Number>().value() };
});
}
void CalculatedStyleValue::CalculationResult::divide_by(CalculationResult const& other, Layout::Node const* layout_node)
{
// We know from validation when resolving the type, that `other` must be a <number> or <integer>.
// Both of these are represented as a Number.
auto denominator = other.m_value.get<Number>().value();
// FIXME: Dividing by 0 is invalid, and should be caught during parsing.
VERIFY(denominator != 0.0f);
m_value.visit(
[&](Number const& number) {
m_value = Number {
Number::Type::Number,
number.value() / denominator
};
},
[&](Angle const& angle) {
m_value = Angle::make_degrees(angle.to_degrees() / denominator);
},
[&](Frequency const& frequency) {
m_value = Frequency::make_hertz(frequency.to_hertz() / denominator);
},
[&](Length const& length) {
VERIFY(layout_node);
m_value = Length::make_px(length.to_px(*layout_node) / static_cast<double>(denominator));
},
[&](Time const& time) {
m_value = Time::make_seconds(time.to_seconds() / denominator);
},
[&](Percentage const& percentage) {
m_value = Percentage { percentage.value() / denominator };
});
}
void CalculatedStyleValue::CalculationResult::negate()
{
m_value.visit(
[&](Number const& number) {
m_value = Number { number.type(), 0 - number.value() };
},
[&](Angle const& angle) {
m_value = Angle { 0 - angle.raw_value(), angle.type() };
},
[&](Frequency const& frequency) {
m_value = Frequency { 0 - frequency.raw_value(), frequency.type() };
},
[&](Length const& length) {
m_value = Length { 0 - length.raw_value(), length.type() };
},
[&](Time const& time) {
m_value = Time { 0 - time.raw_value(), time.type() };
},
[&](Percentage const& percentage) {
m_value = Percentage { 0 - percentage.value() };
});
}
void CalculatedStyleValue::CalculationResult::invert()
{
// FIXME: Correctly handle division by zero.
m_value.visit(
[&](Number const& number) {
m_value = Number { Number::Type::Number, 1 / number.value() };
},
[&](Angle const& angle) {
m_value = Angle { 1 / angle.raw_value(), angle.type() };
},
[&](Frequency const& frequency) {
m_value = Frequency { 1 / frequency.raw_value(), frequency.type() };
},
[&](Length const& length) {
m_value = Length { 1 / length.raw_value(), length.type() };
},
[&](Time const& time) {
m_value = Time { 1 / time.raw_value(), time.type() };
},
[&](Percentage const& percentage) {
m_value = Percentage { 1 / percentage.value() };
});
}
ErrorOr<String> CalculatedStyleValue::to_string() const
{
// FIXME: Implement this according to https://www.w3.org/TR/css-values-4/#calc-serialize once that stabilizes.
return String::formatted("calc({})", TRY(m_calculation->to_string()));
}
bool CalculatedStyleValue::equals(StyleValue const& other) const
{
if (type() != other.type())
return false;
// This is a case where comparing the strings actually makes sense.
return to_string().release_value_but_fixme_should_propagate_errors() == other.to_string().release_value_but_fixme_should_propagate_errors();
}
Optional<Angle> CalculatedStyleValue::resolve_angle() const
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Angle>())
return result.value().get<Angle>();
return {};
}
Optional<Angle> CalculatedStyleValue::resolve_angle_percentage(Angle const& percentage_basis) const
{
auto result = m_calculation->resolve(nullptr, percentage_basis);
return result.value().visit(
[&](Angle const& angle) -> Optional<Angle> {
return angle;
},
[&](Percentage const& percentage) -> Optional<Angle> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Angle> {
return {};
});
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency() const
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Frequency>())
return result.value().get<Frequency>();
return {};
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency_percentage(Frequency const& percentage_basis) const
{
auto result = m_calculation->resolve(nullptr, percentage_basis);
return result.value().visit(
[&](Frequency const& frequency) -> Optional<Frequency> {
return frequency;
},
[&](Percentage const& percentage) -> Optional<Frequency> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Frequency> {
return {};
});
}
Optional<Length> CalculatedStyleValue::resolve_length(Layout::Node const& layout_node) const
{
auto result = m_calculation->resolve(&layout_node, {});
if (result.value().has<Length>())
return result.value().get<Length>();
return {};
}
Optional<Length> CalculatedStyleValue::resolve_length_percentage(Layout::Node const& layout_node, Length const& percentage_basis) const
{
auto result = m_calculation->resolve(&layout_node, percentage_basis);
return result.value().visit(
[&](Length const& length) -> Optional<Length> {
return length;
},
[&](Percentage const& percentage) -> Optional<Length> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Length> {
return {};
});
}
Optional<Percentage> CalculatedStyleValue::resolve_percentage() const
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Percentage>())
return result.value().get<Percentage>();
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time() const
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Time>())
return result.value().get<Time>();
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time_percentage(Time const& percentage_basis) const
{
auto result = m_calculation->resolve(nullptr, percentage_basis);
return result.value().visit(
[&](Time const& time) -> Optional<Time> {
return time;
},
[&](auto const&) -> Optional<Time> {
return {};
});
}
Optional<float> CalculatedStyleValue::resolve_number()
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Number>())
return result.value().get<Number>().value();
return {};
}
Optional<i64> CalculatedStyleValue::resolve_integer()
{
auto result = m_calculation->resolve(nullptr, {});
if (result.value().has<Number>())
return result.value().get<Number>().integer_value();
return {};
}
bool CalculatedStyleValue::contains_percentage() const
{
return m_calculation->contains_percentage();
}
}