ladybird/Userland/Libraries/LibJS/Runtime/Intl/NumberFormat.cpp
Timothy Flynn 5b68c1a06c LibJS: Use Intl.PluralRules within Intl.NumberFormat
This also allows removing a bit of a BigInt hack to resolve plurality of
BigInt numbers (because the AOs used in ResolvePlural support BigInt,
wherease the naive Unicode::select_pattern_with_plurality did not).

We use cardinal form here; the number format patterns in the CLDR align
with the cardinal form of the plural rules.
2022-07-08 20:33:52 +02:00

1339 lines
56 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2021-2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Utf8View.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/NumberFormat.h>
#include <LibJS/Runtime/Intl/NumberFormatFunction.h>
#include <LibJS/Runtime/Intl/PluralRules.h>
#include <LibUnicode/CurrencyCode.h>
#include <math.h>
#include <stdlib.h>
namespace JS::Intl {
NumberFormatBase::NumberFormatBase(Object& prototype)
: Object(prototype)
{
}
// 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects
NumberFormat::NumberFormat(Object& prototype)
: NumberFormatBase(prototype)
{
}
void NumberFormat::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
if (m_bound_format)
visitor.visit(m_bound_format);
}
void NumberFormat::set_style(StringView style)
{
if (style == "decimal"sv)
m_style = Style::Decimal;
else if (style == "percent"sv)
m_style = Style::Percent;
else if (style == "currency"sv)
m_style = Style::Currency;
else if (style == "unit"sv)
m_style = Style::Unit;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::style_string() const
{
switch (m_style) {
case Style::Decimal:
return "decimal"sv;
case Style::Percent:
return "percent"sv;
case Style::Currency:
return "currency"sv;
case Style::Unit:
return "unit"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_display(StringView currency_display)
{
m_resolved_currency_display.clear();
if (currency_display == "code"sv)
m_currency_display = CurrencyDisplay::Code;
else if (currency_display == "symbol"sv)
m_currency_display = CurrencyDisplay::Symbol;
else if (currency_display == "narrowSymbol"sv)
m_currency_display = CurrencyDisplay::NarrowSymbol;
else if (currency_display == "name"sv)
m_currency_display = CurrencyDisplay::Name;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::resolve_currency_display()
{
if (m_resolved_currency_display.has_value())
return *m_resolved_currency_display;
switch (currency_display()) {
case NumberFormat::CurrencyDisplay::Code:
m_resolved_currency_display = currency();
break;
case NumberFormat::CurrencyDisplay::Symbol:
m_resolved_currency_display = Unicode::get_locale_short_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::NarrowSymbol:
m_resolved_currency_display = Unicode::get_locale_narrow_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::Name:
m_resolved_currency_display = Unicode::get_locale_numeric_currency_mapping(data_locale(), currency());
break;
default:
VERIFY_NOT_REACHED();
}
if (!m_resolved_currency_display.has_value())
m_resolved_currency_display = currency();
return *m_resolved_currency_display;
}
StringView NumberFormat::currency_display_string() const
{
VERIFY(m_currency_display.has_value());
switch (*m_currency_display) {
case CurrencyDisplay::Code:
return "code"sv;
case CurrencyDisplay::Symbol:
return "symbol"sv;
case CurrencyDisplay::NarrowSymbol:
return "narrowSymbol"sv;
case CurrencyDisplay::Name:
return "name"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_sign(StringView currency_sign)
{
if (currency_sign == "standard"sv)
m_currency_sign = CurrencySign::Standard;
else if (currency_sign == "accounting"sv)
m_currency_sign = CurrencySign::Accounting;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::currency_sign_string() const
{
VERIFY(m_currency_sign.has_value());
switch (*m_currency_sign) {
case CurrencySign::Standard:
return "standard"sv;
case CurrencySign::Accounting:
return "accounting"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormatBase::rounding_type_string() const
{
switch (m_rounding_type) {
case RoundingType::SignificantDigits:
return "significantDigits"sv;
case RoundingType::FractionDigits:
return "fractionDigits"sv;
case RoundingType::CompactRounding:
return "compactRounding"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_notation(StringView notation)
{
if (notation == "standard"sv)
m_notation = Notation::Standard;
else if (notation == "scientific"sv)
m_notation = Notation::Scientific;
else if (notation == "engineering"sv)
m_notation = Notation::Engineering;
else if (notation == "compact"sv)
m_notation = Notation::Compact;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::notation_string() const
{
switch (m_notation) {
case Notation::Standard:
return "standard"sv;
case Notation::Scientific:
return "scientific"sv;
case Notation::Engineering:
return "engineering"sv;
case Notation::Compact:
return "compact"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_compact_display(StringView compact_display)
{
if (compact_display == "short"sv)
m_compact_display = CompactDisplay::Short;
else if (compact_display == "long"sv)
m_compact_display = CompactDisplay::Long;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::compact_display_string() const
{
VERIFY(m_compact_display.has_value());
switch (*m_compact_display) {
case CompactDisplay::Short:
return "short"sv;
case CompactDisplay::Long:
return "long"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_sign_display(StringView sign_display)
{
if (sign_display == "auto"sv)
m_sign_display = SignDisplay::Auto;
else if (sign_display == "never"sv)
m_sign_display = SignDisplay::Never;
else if (sign_display == "always"sv)
m_sign_display = SignDisplay::Always;
else if (sign_display == "exceptZero"sv)
m_sign_display = SignDisplay::ExceptZero;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::sign_display_string() const
{
switch (m_sign_display) {
case SignDisplay::Auto:
return "auto"sv;
case SignDisplay::Never:
return "never"sv;
case SignDisplay::Always:
return "always"sv;
case SignDisplay::ExceptZero:
return "exceptZero"sv;
default:
VERIFY_NOT_REACHED();
}
}
static ALWAYS_INLINE int log10floor(Value number)
{
if (number.is_number())
return static_cast<int>(floor(log10(number.as_double())));
// FIXME: Can we do this without string conversion?
auto as_string = number.as_bigint().big_integer().to_base(10);
return as_string.length() - 1;
}
static Value multiply(GlobalObject& global_object, Value lhs, i64 rhs)
{
if (lhs.is_number())
return Value(lhs.as_double() * rhs);
auto rhs_bigint = Crypto::SignedBigInteger::create_from(rhs);
return js_bigint(global_object.vm(), lhs.as_bigint().big_integer().multiplied_by(rhs_bigint));
}
static Value divide(GlobalObject& global_object, Value lhs, i64 rhs)
{
if (lhs.is_number())
return Value(lhs.as_double() / rhs);
auto rhs_bigint = Crypto::SignedBigInteger::create_from(rhs);
return js_bigint(global_object.vm(), lhs.as_bigint().big_integer().divided_by(rhs_bigint).quotient);
}
static ALWAYS_INLINE Value multiply_by_power(GlobalObject& global_object, Value number, i64 exponent)
{
if (exponent < 0)
return divide(global_object, number, pow(10, -exponent));
return multiply(global_object, number, pow(10, exponent));
}
static ALWAYS_INLINE Value divide_by_power(GlobalObject& global_object, Value number, i64 exponent)
{
if (exponent < 0)
return multiply(global_object, number, pow(10, -exponent));
return divide(global_object, number, pow(10, exponent));
}
static ALWAYS_INLINE Value rounded(Value number)
{
if (number.is_number())
return Value(round(number.as_double()));
return number;
}
static ALWAYS_INLINE bool is_zero(Value number)
{
if (number.is_number())
return number.as_double() == 0.0;
return number.as_bigint().big_integer() == Crypto::SignedBigInteger::create_from(0);
}
static ALWAYS_INLINE bool is_greater_than(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() > rhs;
return number.as_bigint().big_integer() > Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE bool is_greater_than_or_equal(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() >= rhs;
return number.as_bigint().big_integer() >= Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE bool is_less_than(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() < rhs;
return number.as_bigint().big_integer() < Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE String number_to_string(Value number)
{
if (number.is_number())
return number.to_string_without_side_effects();
return number.as_bigint().big_integer().to_base(10);
}
// 15.5.1 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits
int currency_digits(StringView currency)
{
// 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor
// unit value corresponding to the currency from the list; otherwise, return 2.
if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value())
return currency_code->minor_unit.value_or(2);
return 2;
}
// 15.5.3 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring
FormatResult format_numeric_to_string(GlobalObject& global_object, NumberFormatBase const& intl_object, Value number)
{
// 1. If (x) < 0 or x is -0𝔽, let isNegative be true; else let isNegative be false.
bool is_negative = is_less_than(number, 0) || number.is_negative_zero();
// 2. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number = multiply(global_object, number, -1);
}
RawFormatResult result {};
switch (intl_object.rounding_type()) {
// 3. If intlObject.[[RoundingType]] is significantDigits, then
case NumberFormatBase::RoundingType::SignificantDigits:
// a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]]).
result = to_raw_precision(global_object, number, intl_object.min_significant_digits(), intl_object.max_significant_digits());
break;
// 4. Else if intlObject.[[RoundingType]] is fractionDigits, then
case NumberFormatBase::RoundingType::FractionDigits:
// a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]]).
result = to_raw_fixed(global_object, number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits());
break;
// 5. Else,
case NumberFormatBase::RoundingType::CompactRounding:
// a. Assert: intlObject.[[RoundingType]] is compactRounding.
// b. Let result be ToRawPrecision(x, 1, 2).
result = to_raw_precision(global_object, number, 1, 2);
// c. If result.[[IntegerDigitsCount]] > 1, then
if (result.digits > 1) {
// i. Let result be ToRawFixed(x, 0, 0).
result = to_raw_fixed(global_object, number, 0, 0);
}
break;
default:
VERIFY_NOT_REACHED();
}
// 6. Let x be result.[[RoundedNumber]].
number = result.rounded_number;
// 7. Let string be result.[[FormattedString]].
auto string = move(result.formatted_string);
// 8. Let int be result.[[IntegerDigitsCount]].
int digits = result.digits;
// 9. Let minInteger be intlObject.[[MinimumIntegerDigits]].
int min_integer = intl_object.min_integer_digits();
// 10. If int < minInteger, then
if (digits < min_integer) {
// a. Let forwardZeros be the String consisting of minIntegerint occurrences of the character "0".
auto forward_zeros = String::repeated('0', min_integer - digits);
// b. Set string to the string-concatenation of forwardZeros and string.
string = String::formatted("{}{}", forward_zeros, string);
}
// 11. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number = multiply(global_object, number, -1);
}
// 12. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }.
return { move(string), number };
}
// 15.5.4 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern
Vector<PatternPartition> partition_number_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. Let exponent be 0.
int exponent = 0;
String formatted_string;
// 2. If x is NaN, then
if (number.is_nan()) {
// a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::NaN).value_or("NaN"sv);
}
// 3. Else if x is +∞, then
else if (number.is_positive_infinity()) {
// a. Let n be an ILD String value indicating positive infinity.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 4. Else if x is -∞, then
else if (number.is_negative_infinity()) {
// a. Let n be an ILD String value indicating negative infinity.
// NOTE: The CLDR does not contain unique strings for negative infinity. The negative sign will
// be inserted by the pattern returned from GetNumberFormatPattern.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 5. Else,
else {
// a. If numberFormat.[[Style]] is "percent", let x be 100 × x.
if (number_format.style() == NumberFormat::Style::Percent)
number = multiply(global_object, number, 100);
// b. Let exponent be ComputeExponent(numberFormat, x).
exponent = compute_exponent(global_object, number_format, number);
// c. Let x be x × 10^(-exponent).
number = multiply_by_power(global_object, number, -exponent);
// d. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(global_object, number_format, number);
// e. Let n be formatNumberResult.[[FormattedString]].
formatted_string = move(format_number_result.formatted_string);
// f. Let x be formatNumberResult.[[RoundedNumber]].
number = format_number_result.rounded_number;
}
Unicode::NumberFormat found_pattern {};
// 6. Let pattern be GetNumberFormatPattern(numberFormat, x).
auto pattern = get_number_format_pattern(global_object, number_format, number, found_pattern);
if (!pattern.has_value())
return {};
// 7. Let result be a new empty List.
Vector<PatternPartition> result;
// 8. Let patternParts be PartitionPattern(pattern).
auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); });
// 9. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// b. If p is "literal", then
if (part == "literal"sv) {
// i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// c. Else if p is equal to "number", then
else if (part == "number"sv) {
// i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent).
auto notation_sub_parts = partition_notation_sub_pattern(global_object, number_format, number, formatted_string, exponent);
// ii. Append all elements of notationSubParts to result.
result.extend(move(notation_sub_parts));
}
// d. Else if p is equal to "plusSign", then
else if (part == "plusSign"sv) {
// i. Let plusSignSymbol be the ILND String representing the plus sign.
auto plus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PlusSign).value_or("+"sv);
// ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.
result.append({ "plusSign"sv, plus_sign_symbol });
}
// e. Else if p is equal to "minusSign", then
else if (part == "minusSign"sv) {
// i. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
// ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "minusSign"sv, minus_sign_symbol });
}
// f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then
else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) {
// i. Let percentSignSymbol be the ILND String representing the percent sign.
auto percent_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PercentSign).value_or("%"sv);
// ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.
result.append({ "percentSign"sv, percent_sign_symbol });
}
// g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then
// h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then
else if ((part.starts_with("unitIdentifier:"sv)) && (number_format.style() == NumberFormat::Style::Unit)) {
// Note: Our implementation combines "unitPrefix" and "unitSuffix" into one field, "unitIdentifier".
auto identifier_index = part.substring_view("unitIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// i. Let unit be numberFormat.[[Unit]].
// ii. Let unitDisplay be numberFormat.[[UnitDisplay]].
// iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms.
auto unit_identifier = found_pattern.identifiers[*identifier_index];
// iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result.
result.append({ "unit"sv, unit_identifier });
}
// i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then
// j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then
// k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then
//
// Note: Our implementation manipulates the format string to inject/remove spacing around the
// currency code during GetNumberFormatPattern so that we do not have to do currency
// display / plurality lookups more than once.
else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) {
result.append({ "currency"sv, number_format.resolve_currency_display() });
}
// l. Else,
else {
// i. Let unknown be an ILND String based on x and p.
// ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
// 10. Return result.
return result;
}
static Vector<StringView> separate_integer_into_groups(Unicode::NumberGroupings const& grouping_sizes, StringView integer)
{
Utf8View utf8_integer { integer };
if (utf8_integer.length() <= grouping_sizes.primary_grouping_size)
return { integer };
size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size;
if (index < grouping_sizes.minimum_grouping_digits)
return { integer };
Vector<StringView> groups;
auto add_group = [&](size_t index, size_t length) {
groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string());
};
add_group(index, grouping_sizes.primary_grouping_size);
while (index > grouping_sizes.secondary_grouping_size) {
index -= grouping_sizes.secondary_grouping_size;
add_group(index, grouping_sizes.secondary_grouping_size);
}
if (index > 0)
add_group(0, index);
return groups;
}
// 15.5.5 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern
Vector<PatternPartition> partition_notation_sub_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number, String formatted_string, int exponent)
{
// 1. Let result be a new empty List.
Vector<PatternPartition> result;
auto grouping_sizes = Unicode::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system());
if (!grouping_sizes.has_value())
return {};
// 2. If x is NaN, then
if (number.is_nan()) {
// a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.
result.append({ "nan"sv, move(formatted_string) });
}
// 3. Else if x is a non-finite Number, then
else if (number.is_number() && !number.is_finite_number()) {
// a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.
result.append({ "infinity"sv, move(formatted_string) });
}
// 4. Else,
else {
// a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent).
auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent);
if (!notation_sub_pattern.has_value())
return {};
// b. Let patternParts be PartitionPattern(notationSubPattern).
auto pattern_parts = partition_pattern(*notation_sub_pattern);
// c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// i. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// ii. If p is "literal", then
if (part == "literal"sv) {
// 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// iii. Else if p is equal to "number", then
else if (part == "number"sv) {
// 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 12 below, then
// a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 12.
// b. Replace each digit in n with the value of digits[digit].
// 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system.
formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), formatted_string);
// 3. Let decimalSepIndex be StringIndexOf(n, ".", 0).
auto decimal_sep_index = formatted_string.find('.');
StringView integer;
Optional<StringView> fraction;
// 4. If decimalSepIndex > 0, then
if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) {
// a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
integer = formatted_string.substring_view(0, *decimal_sep_index);
// b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.
fraction = formatted_string.substring_view(*decimal_sep_index + 1);
}
// 5. Else,
else {
// a. Let integer be n.
integer = formatted_string;
// b. Let fraction be undefined.
}
bool use_grouping = number_format.use_grouping();
// FIXME: The spec doesn't indicate this, but grouping should be disabled for numbers less than 10,000 when the notation is compact.
// This is addressed in Intl.NumberFormat V3 with the "min2" [[UseGrouping]] option. However, test262 explicitly expects this
// behavior in the "de-DE" locale tests, because this is how ICU (and therefore V8, SpiderMoney, etc.) has always behaved.
//
// So, in locales "de-*", we must have:
// Intl.NumberFormat("de", {notation: "compact"}).format(1234) === "1234"
// Intl.NumberFormat("de", {notation: "compact"}).format(12345) === "12.345"
// Intl.NumberFormat("de").format(1234) === "1.234"
// Intl.NumberFormat("de").format(12345) === "12.345"
//
// See: https://github.com/tc39/proposal-intl-numberformat-v3/issues/3
if (number_format.has_compact_format())
use_grouping = is_greater_than_or_equal(number, 10'000);
// 6. If the numberFormat.[[UseGrouping]] is true, then
if (use_grouping) {
// a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator.
auto group_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Group).value_or(","sv);
// b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer.
auto groups = separate_integer_into_groups(*grouping_sizes, integer);
// c. Assert: The number of elements in groups List is greater than 0.
VERIFY(!groups.is_empty());
// d. Repeat, while groups List is not empty,
while (!groups.is_empty()) {
// i. Remove the first element from groups and let integerGroup be the value of that element.
auto integer_group = groups.take_first();
// ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result.
result.append({ "integer"sv, integer_group });
// iii. If groups List is not empty, then
if (!groups.is_empty()) {
// i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result.
result.append({ "group"sv, group_sep_symbol });
}
}
}
// 7. Else,
else {
// a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.
result.append({ "integer"sv, integer });
}
// 8. If fraction is not undefined, then
if (fraction.has_value()) {
// a. Let decimalSepSymbol be the ILND String representing the decimal separator.
auto decimal_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Decimal).value_or("."sv);
// b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result.
result.append({ "decimal"sv, decimal_sep_symbol });
// c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
result.append({ "fraction"sv, fraction.release_value() });
}
}
// iv. Else if p is equal to "compactSymbol", then
// v. Else if p is equal to "compactName", then
else if (part.starts_with("compactIdentifier:"sv)) {
// Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier".
auto identifier_index = part.substring_view("compactIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder.
auto compact_identifier = number_format.compact_format().identifiers[*identifier_index];
// 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result.
result.append({ "compact"sv, compact_identifier });
}
// vi. Else if p is equal to "scientificSeparator", then
else if (part == "scientificSeparator"sv) {
// 1. Let scientificSeparator be the ILND String representing the exponent separator.
auto scientific_separator = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Exponential).value_or("E"sv);
// 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result.
result.append({ "exponentSeparator"sv, scientific_separator });
}
// vii. Else if p is equal to "scientificExponent", then
else if (part == "scientificExponent"sv) {
// 1. If exponent < 0, then
if (exponent < 0) {
// a. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
// b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "exponentMinusSign"sv, minus_sign_symbol });
// c. Let exponent be -exponent.
exponent *= -1;
}
// 2. Let exponentResult be ToRawFixed(exponent, 1, 0, 0).
// Note: See the implementation of ToRawFixed for why we do not pass the 1.
auto exponent_result = to_raw_fixed(global_object, Value(exponent), 0, 0);
// FIXME: The spec does not say to do this, but all of major engines perform this replacement.
// Without this, formatting with non-Latin numbering systems will produce non-localized results.
exponent_result.formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), exponent_result.formatted_string);
// 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result.
result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) });
}
// viii. Else,
else {
// 1. Let unknown be an ILND String based on x and p.
// 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
}
// 5. Return result.
return result;
}
// 15.5.6 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber
String format_numeric(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(global_object, number_format, number);
// 2. Let result be the empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 15.5.7 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts
Array* format_numeric_to_parts(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
auto& vm = global_object.vm();
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(global_object, number_format, number);
// 2. Let result be ! ArrayCreate(0).
auto* result = MUST(Array::create(global_object, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(global_object, global_object.object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// e. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
static String cut_trailing_zeroes(StringView string, int cut)
{
// These steps are exactly the same between ToRawPrecision and ToRawFixed.
// Repeat, while cut > 0 and the last character of m is "0",
while ((cut > 0) && string.ends_with('0')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
// Decrease cut by 1.
--cut;
}
// If the last character of m is ".", then
if (string.ends_with('.')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
}
return string.to_string();
}
// 15.5.8 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision
RawFormatResult to_raw_precision(GlobalObject& global_object, Value number, int min_precision, int max_precision)
{
RawFormatResult result {};
// 1. Set x to (x).
// 2. Let p be maxPrecision.
int precision = max_precision;
int exponent = 0;
// 3. If x = 0, then
if (is_zero(number)) {
// a. Let m be the String consisting of p occurrences of the character "0".
result.formatted_string = String::repeated('0', precision);
// b. Let e be 0.
exponent = 0;
// c. Let xFinal be 0.
result.rounded_number = Value(0);
}
// 4. Else,
else {
// FIXME: The result of these steps isn't entirely accurate for large values of 'p' (which
// defaults to 21, resulting in numbers on the order of 10^21). Either AK::format or
// our Number::toString AO (double_to_string in Value.cpp) will need to be improved
// to produce more accurate results.
// a. Let e and n be integers such that 10^(p1) ≤ n < 10^p and for which n × 10^(ep+1) x is as close to zero as possible.
// If there are two such sets of e and n, pick the e and n for which n × 10^(ep+1) is larger.
exponent = log10floor(number);
Value n;
if (number.is_number()) {
n = rounded(divide_by_power(global_object, number, exponent - precision + 1));
} else {
// NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
// factor of 10. This lets us inspect the ones digit and then round up if needed.
n = divide_by_power(global_object, number, exponent - precision);
// FIXME: Can we do this without string conversion?
auto digits = n.as_bigint().big_integer().to_base(10);
auto digit = digits.substring_view(digits.length() - 1);
n = divide(global_object, n, 10);
if (digit.to_uint().value() >= 5)
n = js_bigint(global_object.vm(), n.as_bigint().big_integer().plus(Crypto::SignedBigInteger::create_from(1)));
}
// b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = number_to_string(n);
// c. Let xFinal be n × 10^(ep+1).
result.rounded_number = multiply_by_power(global_object, n, exponent - precision + 1);
}
// 5. If e ≥ p1, then
if (exponent >= (precision - 1)) {
// a. Let m be the string-concatenation of m and ep+1 occurrences of the character "0".
result.formatted_string = String::formatted(
"{}{}",
result.formatted_string,
String::repeated('0', exponent - precision + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 6. Else if e ≥ 0, then
else if (exponent >= 0) {
// a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p(e+1) characters of m.
result.formatted_string = String::formatted(
"{}.{}",
result.formatted_string.substring_view(0, exponent + 1),
result.formatted_string.substring_view(exponent + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 7. Else,
else {
// a. Assert: e < 0.
// b. Let m be the string-concatenation of "0.", (e+1) occurrences of the character "0", and m.
result.formatted_string = String::formatted(
"0.{}{}",
String::repeated('0', -1 * (exponent + 1)),
result.formatted_string);
// c. Let int be 1.
result.digits = 1;
}
// 8. If m contains the character ".", and maxPrecision > minPrecision, then
if (result.formatted_string.contains('.') && (max_precision > min_precision)) {
// a. Let cut be maxPrecision minPrecision.
int cut = max_precision - min_precision;
// Steps 8b-8c are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
}
// 9. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.5.9 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed
// NOTE: The spec has a mistake here. The minInteger parameter is unused and is not provided by FormatNumericToString.
RawFormatResult to_raw_fixed(GlobalObject& global_object, Value number, int min_fraction, int max_fraction)
{
RawFormatResult result {};
// 1. Set x to (x).
// 2. Let f be maxFraction.
int fraction = max_fraction;
// 3. Let n be an integer for which the exact mathematical value of n / 10^f x is as close to zero as possible. If there are two such n, pick the larger n.
auto n = rounded(multiply_by_power(global_object, number, fraction));
// 4. Let xFinal be n / 10^f.
result.rounded_number = divide_by_power(global_object, n, fraction);
// 5. If n = 0, let m be "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = is_zero(n) ? String("0"sv) : number_to_string(n);
// 6. If f ≠ 0, then
if (fraction != 0) {
// a. Let k be the number of characters in m.
auto decimals = result.formatted_string.length();
// b. If k ≤ f, then
if (decimals <= static_cast<size_t>(fraction)) {
// i. Let z be the String value consisting of f+1k occurrences of the character "0".
auto zeroes = String::repeated('0', fraction + 1 - decimals);
// ii. Let m be the string-concatenation of z and m.
result.formatted_string = String::formatted("{}{}", zeroes, result.formatted_string);
// iii. Let k be f+1.
decimals = fraction + 1;
}
// c. Let a be the first kf characters of m, and let b be the remaining f characters of m.
auto a = result.formatted_string.substring_view(0, decimals - fraction);
auto b = result.formatted_string.substring_view(decimals - fraction, fraction);
// d. Let m be the string-concatenation of a, ".", and b.
result.formatted_string = String::formatted("{}.{}", a, b);
// e. Let int be the number of characters in a.
result.digits = a.length();
}
// 7. Else, let int be the number of characters in m.
else {
result.digits = result.formatted_string.length();
}
// 8. Let cut be maxFraction minFraction.
int cut = max_fraction - min_fraction;
// Steps 9-10 are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
// 11. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.5.11 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern
Optional<Variant<StringView, String>> get_number_format_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number, Unicode::NumberFormat& found_pattern)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let patterns be dataLocaleData.[[patterns]].
// 5. Assert: patterns is a Record (see 15.3.3).
Optional<Unicode::NumberFormat> patterns;
// 6. Let style be numberFormat.[[Style]].
switch (number_format.style()) {
// 7. If style is "percent", then
case NumberFormat::Style::Percent:
// a. Let patterns be patterns.[[percent]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Percent);
break;
// 8. Else if style is "unit", then
case NumberFormat::Style::Unit: {
// a. Let unit be numberFormat.[[Unit]].
// b. Let unitDisplay be numberFormat.[[UnitDisplay]].
// c. Let patterns be patterns.[[unit]].
// d. If patterns doesn't have a field [[<unit>]], then
// i. Let unit be "fallback".
// e. Let patterns be patterns.[[<unit>]].
// f. Let patterns be patterns.[[<unitDisplay>]].
auto formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), number_format.unit_display());
auto plurality = resolve_plural(global_object, number_format, Unicode::PluralForm::Cardinal, number);
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end())
patterns = move(*it);
break;
}
// 9. Else if style is "currency", then
case NumberFormat::Style::Currency:
// a. Let currency be numberFormat.[[Currency]].
// b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]].
// c. Let currencySign be numberFormat.[[CurrencySign]].
// d. Let patterns be patterns.[[currency]].
// e. If patterns doesn't have a field [[<currency>]], then
// i. Let currency be "fallback".
// f. Let patterns be patterns.[[<currency>]].
// g. Let patterns be patterns.[[<currencyDisplay>]].
// h. Let patterns be patterns.[[<currencySign>]].
// Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]].
if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) {
auto formats = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyUnit);
auto plurality = resolve_plural(global_object, number_format, Unicode::PluralForm::Cardinal, number);
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end()) {
patterns = move(*it);
break;
}
}
switch (number_format.currency_sign()) {
case NumberFormat::CurrencySign::Standard:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Currency);
break;
case NumberFormat::CurrencySign::Accounting:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Accounting);
break;
}
break;
// 10. Else,
case NumberFormat::Style::Decimal:
// a. Assert: style is "decimal".
// b. Let patterns be patterns.[[decimal]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Decimal);
break;
default:
VERIFY_NOT_REACHED();
}
if (!patterns.has_value())
return {};
StringView pattern;
bool is_positive_zero = number.is_positive_zero() || (number.is_bigint() && is_zero(number));
bool is_negative_zero = number.is_negative_zero();
bool is_nan = number.is_nan();
// 11. Let signDisplay be numberFormat.[[SignDisplay]].
switch (number_format.sign_display()) {
// 12. If signDisplay is "never", then
case NumberFormat::SignDisplay::Never:
// a. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
break;
// 13. Else if signDisplay is "auto", then
case NumberFormat::SignDisplay::Auto:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || is_greater_than(number, 0) || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 14. Else if signDisplay is "always", then
case NumberFormat::SignDisplay::Always:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || is_greater_than(number, 0) || is_nan) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 15. Else,
case NumberFormat::SignDisplay::ExceptZero:
// a. Assert: signDisplay is "exceptZero".
// b. If x is NaN, or if x is finite and (x) is 0, then
if (is_positive_zero || is_negative_zero || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// c. Else if (x) > 0, then
else if (is_greater_than(number, 0)) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// d. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
default:
VERIFY_NOT_REACHED();
}
found_pattern = patterns.release_value();
// Handling of steps 9b/9g: Depending on the currency display and the format pattern found above,
// we might need to mutate the format pattern to inject a space between the currency display and
// the currency number.
if (number_format.style() == NumberFormat::Style::Currency) {
auto modified_pattern = Unicode::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern);
if (modified_pattern.has_value())
return modified_pattern.release_value();
}
// 16. Return pattern.
return pattern;
}
// 15.5.12 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern
Optional<StringView> get_notation_sub_pattern(NumberFormat& number_format, int exponent)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]].
// 5. Assert: notationSubPatterns is a Record (see 15.3.3).
// 6. Let notation be numberFormat.[[Notation]].
auto notation = number_format.notation();
// 7. If notation is "scientific" or notation is "engineering", then
if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) {
// a. Return notationSubPatterns.[[scientific]].
auto notation_sub_patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Scientific);
if (!notation_sub_patterns.has_value())
return {};
return notation_sub_patterns->zero_format;
}
// 8. Else if exponent is not 0, then
else if (exponent != 0) {
// a. Assert: notation is "compact".
VERIFY(notation == NumberFormat::Notation::Compact);
// b. Let compactDisplay be numberFormat.[[CompactDisplay]].
// c. Let compactPatterns be notationSubPatterns.[[compact]].[[<compactDisplay>]].
// d. Return compactPatterns.[[<exponent>]].
if (number_format.has_compact_format())
return number_format.compact_format().zero_format;
}
// 9. Else,
// a. Return "{number}".
return "{number}"sv;
}
// 15.5.13 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent
int compute_exponent(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. If x = 0, then
if (is_zero(number)) {
// a. Return 0.
return 0;
}
// 2. If x < 0, then
if (is_less_than(number, 0)) {
// a. Let x = -x.
number = multiply(global_object, number, -1);
}
// 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer.
int magnitude = log10floor(number);
// 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude).
int exponent = compute_exponent_for_magnitude(number_format, magnitude);
// 5. Let x be x × 10^(-exponent).
number = multiply_by_power(global_object, number, -exponent);
// 6. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(global_object, number_format, number);
// 7. If formatNumberResult.[[RoundedNumber]] = 0, then
if (is_zero(format_number_result.rounded_number)) {
// a. Return exponent.
return exponent;
}
// 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer.
int new_magnitude = log10floor(format_number_result.rounded_number);
// 9. If newMagnitude is magnitude exponent, then
if (new_magnitude == magnitude - exponent) {
// a. Return exponent.
return exponent;
}
// 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1).
return compute_exponent_for_magnitude(number_format, magnitude + 1);
}
// 15.5.14 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude
int compute_exponent_for_magnitude(NumberFormat& number_format, int magnitude)
{
// 1. Let notation be numberFormat.[[Notation]].
switch (number_format.notation()) {
// 2. If notation is "standard", then
case NumberFormat::Notation::Standard:
// a. Return 0.
return 0;
// 3. Else if notation is "scientific", then
case NumberFormat::Notation::Scientific:
// a. Return magnitude.
return magnitude;
// 4. Else if notation is "engineering", then
case NumberFormat::Notation::Engineering: {
// a. Let thousands be the greatest integer that is not greater than magnitude / 3.
double thousands = floor(static_cast<double>(magnitude) / 3.0);
// b. Return thousands × 3.
return static_cast<int>(thousands) * 3;
}
// 5. Else,
case NumberFormat::Notation::Compact: {
// a. Assert: notation is "compact".
VERIFY(number_format.has_compact_display());
// b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale.
// c. Return exponent.
Vector<Unicode::NumberFormat> format_rules;
if (number_format.style() == NumberFormat::Style::Currency)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyShort);
else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalLong);
else
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalShort);
Unicode::NumberFormat const* best_number_format = nullptr;
for (auto const& format_rule : format_rules) {
if (format_rule.magnitude > magnitude)
break;
best_number_format = &format_rule;
}
if (best_number_format == nullptr)
return 0;
number_format.set_compact_format(*best_number_format);
return best_number_format->exponent;
}
default:
VERIFY_NOT_REACHED();
}
}
}