
For now this will assume that the double given is exactly representable as an integer, so no NaN, infinity or rounding.
503 lines
18 KiB
C++
503 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "SignedBigInteger.h"
|
|
#include <AK/StringBuilder.h>
|
|
#include <math.h>
|
|
|
|
namespace Crypto {
|
|
|
|
SignedBigInteger::SignedBigInteger(double value)
|
|
: m_sign(value < 0.0)
|
|
, m_unsigned_data(fabs(value))
|
|
{
|
|
}
|
|
|
|
SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length)
|
|
{
|
|
bool sign = *ptr;
|
|
auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
|
|
return { move(unsigned_data), sign };
|
|
}
|
|
|
|
size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
|
|
{
|
|
// FIXME: Support this:
|
|
// m <0XX> -> m <XX> (if remove_leading_zeros)
|
|
VERIFY(!remove_leading_zeros);
|
|
|
|
data[0] = m_sign;
|
|
auto bytes_view = data.slice(1, data.size() - 1);
|
|
return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1;
|
|
}
|
|
|
|
SignedBigInteger SignedBigInteger::from_base(u16 N, StringView str)
|
|
{
|
|
auto sign = false;
|
|
if (str.length() > 1) {
|
|
auto maybe_sign = str[0];
|
|
if (maybe_sign == '-') {
|
|
str = str.substring_view(1);
|
|
sign = true;
|
|
}
|
|
if (maybe_sign == '+')
|
|
str = str.substring_view(1);
|
|
}
|
|
auto unsigned_data = UnsignedBigInteger::from_base(N, str);
|
|
return { move(unsigned_data), sign };
|
|
}
|
|
|
|
String SignedBigInteger::to_base(u16 N) const
|
|
{
|
|
StringBuilder builder;
|
|
|
|
if (m_sign)
|
|
builder.append('-');
|
|
|
|
builder.append(m_unsigned_data.to_base(N));
|
|
|
|
return builder.to_string();
|
|
}
|
|
|
|
u64 SignedBigInteger::to_u64() const
|
|
{
|
|
u64 unsigned_value = m_unsigned_data.to_u64();
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN
|
|
}
|
|
|
|
double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
|
|
{
|
|
double unsigned_value = m_unsigned_data.to_double(rounding_mode);
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
|
|
VERIFY(!is_zero());
|
|
return -unsigned_value;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const
|
|
{
|
|
// If both are of the same sign, just add the unsigned data and return.
|
|
if (m_sign == other.m_sign)
|
|
return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
|
|
|
|
// One value is signed while the other is not.
|
|
return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const
|
|
{
|
|
// If the signs are different, convert the op to an addition.
|
|
if (m_sign != other.m_sign) {
|
|
// -x - y = - (x + y)
|
|
// x - -y = (x + y)
|
|
SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
|
|
if (m_sign)
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
if (!m_sign) {
|
|
// Both operands are positive.
|
|
// x - y = - (y - x)
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return { other.m_unsigned_data.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
// The result will be either zero, or positive.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
|
|
}
|
|
|
|
// Both operands are negative.
|
|
// -x - -y = y - x
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be positive.
|
|
return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) };
|
|
}
|
|
// y - x = - (x - y)
|
|
if (m_unsigned_data > other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true };
|
|
}
|
|
// Both operands have the same magnitude, the result is positive zero.
|
|
return SignedBigInteger { 0 };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign) {
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), true };
|
|
|
|
return { other.minus(m_unsigned_data), false };
|
|
}
|
|
|
|
return { m_unsigned_data.plus(other), false };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return { m_unsigned_data.plus(m_unsigned_data), true };
|
|
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), false };
|
|
|
|
return { other.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const
|
|
{
|
|
// Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude.
|
|
// In two's complement, -x := ~x + 1.
|
|
// Hence, ~x == -x -1 == -(x + 1).
|
|
SignedBigInteger result = plus(SignedBigInteger { 1 });
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
|
|
{
|
|
return { unsigned_value().multiplied_by(other), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
|
|
{
|
|
auto division_result = unsigned_value().divided_by(divisor);
|
|
return {
|
|
{ move(division_result.quotient), m_sign },
|
|
{ move(division_result.remainder), m_sign },
|
|
};
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const
|
|
{
|
|
// See bitwise_and() for derivations.
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_or(other.unsigned_value()), false };
|
|
|
|
// -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field.
|
|
// That can be simplified to:
|
|
// -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1
|
|
// This saves one ~.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true };
|
|
}
|
|
|
|
// -(A | -B) == ~A & (B - 1) + 1
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const
|
|
{
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_and(other.unsigned_value()), false };
|
|
|
|
// These two just use that -x == ~x + 1 (see below).
|
|
|
|
// -A & B == (~A + 1) & B.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false };
|
|
}
|
|
|
|
// A & -B == A & (~B + 1).
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false };
|
|
}
|
|
|
|
// Both numbers are negative.
|
|
// x + ~x == 0xff...ff, up to however many bits x is wide.
|
|
// In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out.
|
|
// Rearranging terms, ~x = -x - 1 (eq1).
|
|
// Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2).
|
|
// Since both numbers are negative, we want to compute -A & -B.
|
|
// Per (eq2):
|
|
// -A & -B == ~(A - 1) & ~(B - 1)
|
|
// Inverting both sides:
|
|
// ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1).
|
|
// Applying (q1) on the LHS:
|
|
// -(-A & -B) - 1 == (A - 1) | (B - 1)
|
|
// Adding 1 on both sides and then multiplying both sides by -1:
|
|
// -A & -B == -( (A - 1) | (B - 1) + 1)
|
|
// So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1.
|
|
// This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s.
|
|
return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const
|
|
{
|
|
return bitwise_or(other).minus(bitwise_and(other));
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return false;
|
|
return m_unsigned_data == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data != other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data < other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
|
|
{
|
|
return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const
|
|
{
|
|
bool result_sign = m_sign ^ other.m_sign;
|
|
return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const
|
|
{
|
|
// Aa / Bb -> (A^B)q, Ar
|
|
bool result_sign = m_sign ^ divisor.m_sign;
|
|
auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
|
|
return {
|
|
{ move(unsigned_division_result.quotient), result_sign },
|
|
{ move(unsigned_division_result.remainder), m_sign }
|
|
};
|
|
}
|
|
|
|
u32 SignedBigInteger::hash() const
|
|
{
|
|
return m_unsigned_data.hash() * (1 - (2 * m_sign));
|
|
}
|
|
|
|
void SignedBigInteger::set_bit_inplace(size_t bit_index)
|
|
{
|
|
m_unsigned_data.set_bit_inplace(bit_index);
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(SignedBigInteger const& other) const
|
|
{
|
|
if (is_invalid() != other.is_invalid())
|
|
return false;
|
|
|
|
if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
|
|
return true;
|
|
|
|
return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(SignedBigInteger const& other) const
|
|
{
|
|
if (m_sign ^ other.m_sign)
|
|
return m_sign;
|
|
|
|
if (m_sign)
|
|
return other.m_unsigned_data < m_unsigned_data;
|
|
|
|
return m_unsigned_data < other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<=(SignedBigInteger const& other) const
|
|
{
|
|
return *this < other || *this == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(SignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this < other);
|
|
}
|
|
|
|
SignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
|
|
{
|
|
VERIFY(!isnan(value));
|
|
|
|
if (isinf(value)) {
|
|
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
|
|
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
bool bigint_is_negative = m_sign;
|
|
|
|
bool value_is_negative = value < 0;
|
|
|
|
if (value_is_negative != bigint_is_negative)
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
|
|
// Value is zero, and from above the signs must be the same.
|
|
if (value == 0.0) {
|
|
VERIFY(!value_is_negative && !bigint_is_negative);
|
|
// Either we are also zero or value is certainly less than us.
|
|
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
// If value is not zero but we are, then since the signs are the same value must be greater.
|
|
if (is_zero())
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
constexpr u64 mantissa_size = 52;
|
|
constexpr u64 exponent_size = 11;
|
|
constexpr auto exponent_bias = (1 << (exponent_size - 1)) - 1;
|
|
union FloatExtractor {
|
|
struct {
|
|
unsigned long long mantissa : mantissa_size;
|
|
unsigned exponent : exponent_size;
|
|
unsigned sign : 1;
|
|
};
|
|
double d;
|
|
} extractor;
|
|
|
|
extractor.d = value;
|
|
VERIFY(extractor.exponent != (1 << exponent_size) - 1);
|
|
// Exponent cannot be filled as than we must be NaN or infinity.
|
|
|
|
i32 real_exponent = extractor.exponent - exponent_bias;
|
|
if (real_exponent < 0) {
|
|
// |value| is less than 1, and we cannot be zero so if we are negative
|
|
// value must be greater and vice versa.
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
u64 bigint_bits_needed = m_unsigned_data.one_based_index_of_highest_set_bit();
|
|
VERIFY(bigint_bits_needed > 0);
|
|
|
|
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
|
|
// `exponent - bias + 1` bit to represent doubles value,
|
|
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
|
|
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
|
|
u32 double_bits_needed = real_exponent + 1;
|
|
|
|
if (bigint_bits_needed > double_bits_needed) {
|
|
// If we need more bits to represent us, we must be of greater magnitude
|
|
// this means that if we are negative we are below value and if positive above value.
|
|
return bigint_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
if (bigint_bits_needed < double_bits_needed)
|
|
return bigint_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
u64 mantissa_bits = extractor.mantissa;
|
|
|
|
// We add the bit which represents the 1. of the double value calculation
|
|
constexpr u64 mantissa_extended_bit = 1ull << mantissa_size;
|
|
|
|
mantissa_bits |= mantissa_extended_bit;
|
|
|
|
// Now we shift value to the left virtually, with `exponent - bias` steps
|
|
// we then pretend both it and the big int are extended with virtual zeros.
|
|
using Word = UnsignedBigInteger::Word;
|
|
auto next_bigint_word = (UnsignedBigInteger::BITS_IN_WORD - 1 + bigint_bits_needed) / UnsignedBigInteger::BITS_IN_WORD;
|
|
|
|
VERIFY(next_bigint_word + 1 == trimmed_length());
|
|
|
|
auto msb_in_top_word_index = (bigint_bits_needed - 1) % UnsignedBigInteger::BITS_IN_WORD;
|
|
VERIFY(msb_in_top_word_index == (UnsignedBigInteger::BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
|
|
|
|
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
|
|
mantissa_bits <<= 64 - (mantissa_size + 1);
|
|
|
|
auto bits_left_in_mantissa = mantissa_size + 1;
|
|
|
|
auto get_next_value_bits = [&](size_t num_bits) -> Word {
|
|
VERIFY(num_bits < 63);
|
|
VERIFY(bits_left_in_mantissa > 0);
|
|
if (num_bits > bits_left_in_mantissa)
|
|
num_bits = bits_left_in_mantissa;
|
|
|
|
bits_left_in_mantissa -= num_bits;
|
|
|
|
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
|
|
// Now shift the bits down to put the most significant bit on the num_bits position
|
|
// this means the rest will be "virtual" zeros.
|
|
extracted_bits >>= 32;
|
|
|
|
// Now shift away the used bits and fit the result into a Word.
|
|
mantissa_bits <<= num_bits;
|
|
|
|
VERIFY(extracted_bits <= NumericLimits<Word>::max());
|
|
return static_cast<Word>(extracted_bits);
|
|
};
|
|
|
|
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
|
|
|
|
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
|
|
Word bigint_word = words()[next_bigint_word - 1];
|
|
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
|
|
|
|
// For the first bit we have to align it with the top bit of bigint
|
|
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
|
|
double_word >>= 32 - bits_in_next_bigint_word;
|
|
|
|
if (bigint_word < double_word)
|
|
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
if (bigint_word > double_word)
|
|
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
|
|
--next_bigint_word;
|
|
bits_in_next_bigint_word = UnsignedBigInteger::BITS_IN_WORD;
|
|
}
|
|
|
|
// If there are still bits left in bigint than any non zero bit means it has greater magnitude.
|
|
if (next_bigint_word > 0) {
|
|
VERIFY(bits_left_in_mantissa == 0);
|
|
while (next_bigint_word > 0) {
|
|
if (words()[next_bigint_word - 1] != 0)
|
|
return value_is_negative ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
--next_bigint_word;
|
|
}
|
|
} else if (bits_left_in_mantissa > 0) {
|
|
VERIFY(next_bigint_word == 0);
|
|
// Similarly if there are still any bits set in the mantissa it has greater magnitude.
|
|
if (mantissa_bits != 0)
|
|
return value_is_negative ? CompareResult::DoubleLessThanBigInt : CompareResult::DoubleGreaterThanBigInt;
|
|
}
|
|
|
|
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
|
|
return CompareResult::DoubleEqualsBigInt;
|
|
}
|
|
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Crypto::SignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value)
|
|
{
|
|
if (value.is_negative())
|
|
TRY(fmtbuilder.put_string("-"sv));
|
|
return Formatter<Crypto::UnsignedBigInteger>::format(fmtbuilder, value.unsigned_value());
|
|
}
|