ladybird/Kernel/FileSystem/RAMFS/Inode.cpp
Liav A 4a14138230 Kernel/FileSystem: Fix check of read offset for the RAMFSInode code
The check of ensuring we are not trying to read beyond the end of the
inode data buffer is already there, it's just that we need to disallow
further reading if the read offset equals to the inode data size.
2023-02-19 01:01:45 +01:00

398 lines
13 KiB
C++

/*
* Copyright (c) 2019-2020, Sergey Bugaev <bugaevc@serenityos.org>
* Copyright (c) 2022-2023, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/FileSystem/RAMFS/Inode.h>
#include <Kernel/Process.h>
namespace Kernel {
RAMFSInode::RAMFSInode(RAMFS& fs, InodeMetadata const& metadata, LockWeakPtr<RAMFSInode> parent)
: Inode(fs, fs.next_inode_index())
, m_metadata(metadata)
, m_parent(move(parent))
{
m_metadata.inode = identifier();
}
RAMFSInode::RAMFSInode(RAMFS& fs)
: Inode(fs, 1)
, m_root_directory_inode(true)
{
auto now = kgettimeofday();
m_metadata.inode = identifier();
m_metadata.atime = now;
m_metadata.ctime = now;
m_metadata.mtime = now;
m_metadata.mode = S_IFDIR | 0755;
}
RAMFSInode::~RAMFSInode() = default;
ErrorOr<NonnullLockRefPtr<RAMFSInode>> RAMFSInode::try_create(RAMFS& fs, InodeMetadata const& metadata, LockWeakPtr<RAMFSInode> parent)
{
return adopt_nonnull_lock_ref_or_enomem(new (nothrow) RAMFSInode(fs, metadata, move(parent)));
}
ErrorOr<NonnullLockRefPtr<RAMFSInode>> RAMFSInode::try_create_root(RAMFS& fs)
{
return adopt_nonnull_lock_ref_or_enomem(new (nothrow) RAMFSInode(fs));
}
InodeMetadata RAMFSInode::metadata() const
{
MutexLocker locker(m_inode_lock, Mutex::Mode::Shared);
return m_metadata;
}
ErrorOr<void> RAMFSInode::traverse_as_directory(Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const
{
MutexLocker locker(m_inode_lock, Mutex::Mode::Shared);
if (!is_directory())
return ENOTDIR;
TRY(callback({ "."sv, identifier(), 0 }));
if (m_root_directory_inode) {
TRY(callback({ ".."sv, identifier(), 0 }));
} else if (auto parent = m_parent.strong_ref()) {
TRY(callback({ ".."sv, parent->identifier(), 0 }));
}
for (auto& child : m_children) {
TRY(callback({ child.name->view(), child.inode->identifier(), 0 }));
}
return {};
}
ErrorOr<void> RAMFSInode::replace_child(StringView name, Inode& new_child)
{
MutexLocker locker(m_inode_lock);
VERIFY(is_directory());
VERIFY(new_child.fsid() == fsid());
auto* child = find_child_by_name(name);
if (!child)
return ENOENT;
auto old_child = child->inode;
child->inode = static_cast<RAMFSInode&>(new_child);
old_child->did_delete_self();
// TODO: Emit a did_replace_child event.
return {};
}
ErrorOr<NonnullOwnPtr<RAMFSInode::DataBlock>> RAMFSInode::DataBlock::create()
{
auto data_block_buffer_vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(DataBlock::block_size, AllocationStrategy::AllocateNow));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) DataBlock(move(data_block_buffer_vmobject))));
}
ErrorOr<void> RAMFSInode::ensure_allocated_blocks(size_t offset, size_t io_size)
{
VERIFY(m_inode_lock.is_locked());
size_t block_start_index = offset / DataBlock::block_size;
size_t block_last_index = ((offset + io_size) / DataBlock::block_size) + (((offset + io_size) % DataBlock::block_size) == 0 ? 0 : 1);
VERIFY(block_start_index <= block_last_index);
size_t original_size = m_blocks.size();
Vector<size_t> allocated_block_indices;
ArmedScopeGuard clean_allocated_blocks_on_failure([&] {
for (auto index : allocated_block_indices)
m_blocks[index].clear();
MUST(m_blocks.try_resize(original_size));
});
if (m_blocks.size() < (block_last_index))
TRY(m_blocks.try_resize(block_last_index));
for (size_t block_index = block_start_index; block_index < block_last_index; block_index++) {
if (!m_blocks[block_index]) {
TRY(allocated_block_indices.try_append(block_index));
m_blocks[block_index] = TRY(DataBlock::create());
}
}
clean_allocated_blocks_on_failure.disarm();
return {};
}
ErrorOr<size_t> RAMFSInode::read_bytes_from_content_space(size_t offset, size_t io_size, UserOrKernelBuffer& buffer) const
{
VERIFY(m_inode_lock.is_locked());
VERIFY(m_metadata.size >= 0);
if (offset >= static_cast<size_t>(m_metadata.size))
return 0;
auto mapping_region = TRY(MM.allocate_kernel_region(DataBlock::block_size, "RAMFSInode Mapping Region"sv, Memory::Region::Access::Read, AllocationStrategy::Reserve));
return const_cast<RAMFSInode&>(*this).do_io_on_content_space(*mapping_region, offset, io_size, buffer, false);
}
ErrorOr<size_t> RAMFSInode::read_bytes_locked(off_t offset, size_t size, UserOrKernelBuffer& buffer, OpenFileDescription*) const
{
VERIFY(m_inode_lock.is_locked());
VERIFY(!is_directory());
return read_bytes_from_content_space(offset, size, buffer);
}
ErrorOr<size_t> RAMFSInode::write_bytes_to_content_space(size_t offset, size_t io_size, UserOrKernelBuffer const& buffer)
{
VERIFY(m_inode_lock.is_locked());
auto mapping_region = TRY(MM.allocate_kernel_region(DataBlock::block_size, "RAMFSInode Mapping Region"sv, Memory::Region::Access::Write, AllocationStrategy::Reserve));
return do_io_on_content_space(*mapping_region, offset, io_size, const_cast<UserOrKernelBuffer&>(buffer), true);
}
ErrorOr<size_t> RAMFSInode::write_bytes_locked(off_t offset, size_t size, UserOrKernelBuffer const& buffer, OpenFileDescription*)
{
VERIFY(m_inode_lock.is_locked());
VERIFY(!is_directory());
VERIFY(offset >= 0);
TRY(ensure_allocated_blocks(offset, size));
auto nwritten = TRY(write_bytes_to_content_space(offset, size, buffer));
off_t old_size = m_metadata.size;
off_t new_size = m_metadata.size;
if (static_cast<off_t>(offset + size) > new_size)
new_size = offset + size;
if (new_size > old_size) {
m_metadata.size = new_size;
set_metadata_dirty(true);
}
did_modify_contents();
return nwritten;
}
ErrorOr<size_t> RAMFSInode::do_io_on_content_space(Memory::Region& mapping_region, size_t offset, size_t io_size, UserOrKernelBuffer& buffer, bool write)
{
VERIFY(m_inode_lock.is_locked());
size_t remaining_bytes = 0;
if (!write) {
// Note: For read operations, only perform read until the last byte.
// If we are beyond the last byte, return 0 to indicate EOF.
remaining_bytes = min(io_size, m_metadata.size - offset);
if (remaining_bytes == 0)
return 0;
} else {
remaining_bytes = io_size;
}
VERIFY(remaining_bytes != 0);
UserOrKernelBuffer current_buffer = buffer.offset(0);
auto block_start_index = offset / DataBlock::block_size;
auto offset_in_block = offset % DataBlock::block_size;
u64 block_index = block_start_index;
size_t nio = 0;
while (remaining_bytes > 0) {
size_t current_io_size = min(DataBlock::block_size - offset_in_block, remaining_bytes);
auto& block = m_blocks[block_index];
if (!block && !write) {
// Note: If the block does not exist then it's just a gap in the file,
// so the buffer should be placed with zeroes in that section.
TRY(current_buffer.memset(0, 0, current_io_size));
remaining_bytes -= current_io_size;
current_buffer = current_buffer.offset(current_io_size);
nio += current_io_size;
block_index++;
// Note: Clear offset_in_block to zero to ensure that if we started from a middle of
// a block, then next writes are just going to happen from the start of each block until the end.
offset_in_block = 0;
continue;
} else if (!block) {
return Error::from_errno(EIO);
}
NonnullLockRefPtr<Memory::AnonymousVMObject> block_vmobject = block->vmobject();
mapping_region.set_vmobject(block_vmobject);
mapping_region.remap();
if (write)
TRY(current_buffer.read(mapping_region.vaddr().offset(offset_in_block).as_ptr(), 0, current_io_size));
else
TRY(current_buffer.write(mapping_region.vaddr().offset(offset_in_block).as_ptr(), 0, current_io_size));
current_buffer = current_buffer.offset(current_io_size);
nio += current_io_size;
remaining_bytes -= current_io_size;
block_index++;
// Note: Clear offset_in_block to zero to ensure that if we started from a middle of
// a block, then next writes are just going to happen from the start of each block until the end.
offset_in_block = 0;
}
VERIFY(nio <= io_size);
return nio;
}
ErrorOr<void> RAMFSInode::truncate_to_block_index(size_t block_index)
{
VERIFY(m_inode_lock.is_locked());
TRY(m_blocks.try_resize(block_index));
return {};
}
ErrorOr<NonnullLockRefPtr<Inode>> RAMFSInode::lookup(StringView name)
{
MutexLocker locker(m_inode_lock, Mutex::Mode::Shared);
VERIFY(is_directory());
if (name == ".")
return *this;
if (name == "..") {
if (auto parent = m_parent.strong_ref())
return parent.release_nonnull();
return ENOENT;
}
auto* child = find_child_by_name(name);
if (!child)
return ENOENT;
return child->inode;
}
RAMFSInode::Child* RAMFSInode::find_child_by_name(StringView name)
{
for (auto& child : m_children) {
if (child.name->view() == name)
return &child;
}
return nullptr;
}
ErrorOr<void> RAMFSInode::flush_metadata()
{
// We don't really have any metadata that could become dirty.
// The only reason we even call set_metadata_dirty() is
// to let the watchers know we have updates. Once that is
// switched to a different mechanism, we can stop ever marking
// our metadata as dirty at all.
set_metadata_dirty(false);
return {};
}
ErrorOr<void> RAMFSInode::chmod(mode_t mode)
{
MutexLocker locker(m_inode_lock);
m_metadata.mode = mode;
set_metadata_dirty(true);
return {};
}
ErrorOr<void> RAMFSInode::chown(UserID uid, GroupID gid)
{
MutexLocker locker(m_inode_lock);
m_metadata.uid = uid;
m_metadata.gid = gid;
set_metadata_dirty(true);
return {};
}
ErrorOr<NonnullLockRefPtr<Inode>> RAMFSInode::create_child(StringView name, mode_t mode, dev_t dev, UserID uid, GroupID gid)
{
MutexLocker locker(m_inode_lock);
auto now = kgettimeofday();
InodeMetadata metadata;
metadata.mode = mode;
metadata.uid = uid;
metadata.gid = gid;
metadata.atime = now;
metadata.ctime = now;
metadata.mtime = now;
metadata.major_device = major_from_encoded_device(dev);
metadata.minor_device = minor_from_encoded_device(dev);
auto child = TRY(RAMFSInode::try_create(fs(), metadata, *this));
TRY(add_child(*child, name, mode));
return child;
}
ErrorOr<void> RAMFSInode::add_child(Inode& child, StringView name, mode_t)
{
VERIFY(is_directory());
VERIFY(child.fsid() == fsid());
if (name.length() > NAME_MAX)
return ENAMETOOLONG;
MutexLocker locker(m_inode_lock);
for (auto const& existing_child : m_children) {
if (existing_child.name->view() == name)
return EEXIST;
}
auto name_kstring = TRY(KString::try_create(name));
// Balanced by `delete` in remove_child()
auto* child_entry = new (nothrow) Child { move(name_kstring), static_cast<RAMFSInode&>(child) };
if (!child_entry)
return ENOMEM;
m_children.append(*child_entry);
did_add_child(child.identifier(), name);
return {};
}
ErrorOr<void> RAMFSInode::remove_child(StringView name)
{
MutexLocker locker(m_inode_lock);
VERIFY(is_directory());
if (name == "." || name == "..")
return {};
auto* child = find_child_by_name(name);
if (!child)
return ENOENT;
auto child_id = child->inode->identifier();
child->inode->did_delete_self();
m_children.remove(*child);
did_remove_child(child_id, name);
// Balanced by `new` in add_child()
delete child;
return {};
}
ErrorOr<void> RAMFSInode::truncate(u64 size)
{
MutexLocker locker(m_inode_lock);
VERIFY(!is_directory());
u64 block_index = size / DataBlock::block_size + ((size % DataBlock::block_size == 0) ? 0 : 1);
TRY(truncate_to_block_index(block_index));
u64 last_possible_block_index = size / DataBlock::block_size;
if ((size % DataBlock::block_size != 0) && m_blocks[last_possible_block_index]) {
auto mapping_region = TRY(MM.allocate_kernel_region(DataBlock::block_size, "RAMFSInode Mapping Region"sv, Memory::Region::Access::Write, AllocationStrategy::Reserve));
VERIFY(m_blocks[last_possible_block_index]);
NonnullLockRefPtr<Memory::AnonymousVMObject> block_vmobject = m_blocks[last_possible_block_index]->vmobject();
mapping_region->set_vmobject(block_vmobject);
mapping_region->remap();
memset(mapping_region->vaddr().offset(size % DataBlock::block_size).as_ptr(), 0, DataBlock::block_size - (size % DataBlock::block_size));
}
m_metadata.size = size;
set_metadata_dirty(true);
return {};
}
ErrorOr<void> RAMFSInode::update_timestamps(Optional<Time> atime, Optional<Time> ctime, Optional<Time> mtime)
{
MutexLocker locker(m_inode_lock);
if (atime.has_value())
m_metadata.atime = atime.value();
if (ctime.has_value())
m_metadata.ctime = ctime.value();
if (mtime.has_value())
m_metadata.mtime = mtime.value();
set_metadata_dirty(true);
return {};
}
}