ladybird/Userland/Libraries/LibJS/Runtime/PromiseResolvingElementFunctions.cpp
Andreas Kling 3c74dc9f4d LibJS: Segregate GC-allocated objects by type
This patch adds two macros to declare per-type allocators:

- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)

When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.

The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.

It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)

There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.

Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
2023-11-19 12:10:31 +01:00

212 lines
9 KiB
C++

/*
* Copyright (c) 2021, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/AggregateError.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/PromiseCapability.h>
#include <LibJS/Runtime/PromiseResolvingElementFunctions.h>
namespace JS {
JS_DEFINE_ALLOCATOR(RemainingElements);
JS_DEFINE_ALLOCATOR(PromiseValueList);
JS_DEFINE_ALLOCATOR(PromiseResolvingElementFunction);
JS_DEFINE_ALLOCATOR(PromiseAllResolveElementFunction);
JS_DEFINE_ALLOCATOR(PromiseAllSettledRejectElementFunction);
JS_DEFINE_ALLOCATOR(PromiseAnyRejectElementFunction);
void PromiseValueList::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
for (auto& val : m_values)
visitor.visit(val);
}
PromiseResolvingElementFunction::PromiseResolvingElementFunction(size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements, Object& prototype)
: NativeFunction(prototype)
, m_index(index)
, m_values(values)
, m_capability(capability)
, m_remaining_elements(remaining_elements)
{
}
void PromiseResolvingElementFunction::initialize(Realm& realm)
{
Base::initialize(realm);
define_direct_property(vm().names.length, Value(1), Attribute::Configurable);
}
ThrowCompletionOr<Value> PromiseResolvingElementFunction::call()
{
if (m_already_called)
return js_undefined();
m_already_called = true;
return resolve_element();
}
void PromiseResolvingElementFunction::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_values);
visitor.visit(m_capability);
visitor.visit(m_remaining_elements);
}
NonnullGCPtr<PromiseAllResolveElementFunction> PromiseAllResolveElementFunction::create(Realm& realm, size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements)
{
return realm.heap().allocate<PromiseAllResolveElementFunction>(realm, index, values, capability, remaining_elements, realm.intrinsics().function_prototype());
}
PromiseAllResolveElementFunction::PromiseAllResolveElementFunction(size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements, Object& prototype)
: PromiseResolvingElementFunction(index, values, capability, remaining_elements, prototype)
{
}
ThrowCompletionOr<Value> PromiseAllResolveElementFunction::resolve_element()
{
auto& vm = this->vm();
auto& realm = *vm.current_realm();
// 8. Set values[index] to x.
m_values->values()[m_index] = vm.argument(0);
// 9. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.
// 10. If remainingElementsCount.[[Value]] is 0, then
if (--m_remaining_elements->value == 0) {
// a. Let valuesArray be CreateArrayFromList(values).
auto values_array = Array::create_from(realm, m_values->values());
// b. Return ? Call(promiseCapability.[[Resolve]], undefined, « valuesArray »).
return JS::call(vm, *m_capability->resolve(), js_undefined(), values_array);
}
// 11. Return undefined.
return js_undefined();
}
NonnullGCPtr<PromiseAllSettledResolveElementFunction> PromiseAllSettledResolveElementFunction::create(Realm& realm, size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements)
{
return realm.heap().allocate<PromiseAllSettledResolveElementFunction>(realm, index, values, capability, remaining_elements, realm.intrinsics().function_prototype());
}
PromiseAllSettledResolveElementFunction::PromiseAllSettledResolveElementFunction(size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements, Object& prototype)
: PromiseResolvingElementFunction(index, values, capability, remaining_elements, prototype)
{
}
ThrowCompletionOr<Value> PromiseAllSettledResolveElementFunction::resolve_element()
{
auto& vm = this->vm();
auto& realm = *vm.current_realm();
// 9. Let obj be OrdinaryObjectCreate(%Object.prototype%).
auto object = Object::create(realm, realm.intrinsics().object_prototype());
// 10. Perform ! CreateDataPropertyOrThrow(obj, "status", "fulfilled").
MUST(object->create_data_property_or_throw(vm.names.status, PrimitiveString::create(vm, "fulfilled"_string)));
// 11. Perform ! CreateDataPropertyOrThrow(obj, "value", x).
MUST(object->create_data_property_or_throw(vm.names.value, vm.argument(0)));
// 12. Set values[index] to obj.
m_values->values()[m_index] = object;
// 13. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.
// 14. If remainingElementsCount.[[Value]] is 0, then
if (--m_remaining_elements->value == 0) {
// a. Let valuesArray be CreateArrayFromList(values).
auto values_array = Array::create_from(realm, m_values->values());
// b. Return ? Call(promiseCapability.[[Resolve]], undefined, « valuesArray »).
return JS::call(vm, *m_capability->resolve(), js_undefined(), values_array);
}
// 15. Return undefined.
return js_undefined();
}
NonnullGCPtr<PromiseAllSettledRejectElementFunction> PromiseAllSettledRejectElementFunction::create(Realm& realm, size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements)
{
return realm.heap().allocate<PromiseAllSettledRejectElementFunction>(realm, index, values, capability, remaining_elements, realm.intrinsics().function_prototype());
}
PromiseAllSettledRejectElementFunction::PromiseAllSettledRejectElementFunction(size_t index, PromiseValueList& values, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements, Object& prototype)
: PromiseResolvingElementFunction(index, values, capability, remaining_elements, prototype)
{
}
ThrowCompletionOr<Value> PromiseAllSettledRejectElementFunction::resolve_element()
{
auto& vm = this->vm();
auto& realm = *vm.current_realm();
// 9. Let obj be OrdinaryObjectCreate(%Object.prototype%).
auto object = Object::create(realm, realm.intrinsics().object_prototype());
// 10. Perform ! CreateDataPropertyOrThrow(obj, "status", "rejected").
MUST(object->create_data_property_or_throw(vm.names.status, PrimitiveString::create(vm, "rejected"_string)));
// 11. Perform ! CreateDataPropertyOrThrow(obj, "reason", x).
MUST(object->create_data_property_or_throw(vm.names.reason, vm.argument(0)));
// 12. Set values[index] to obj.
m_values->values()[m_index] = object;
// 13. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.
// 14. If remainingElementsCount.[[Value]] is 0, then
if (--m_remaining_elements->value == 0) {
// a. Let valuesArray be CreateArrayFromList(values).
auto values_array = Array::create_from(realm, m_values->values());
// b. Return ? Call(promiseCapability.[[Resolve]], undefined, « valuesArray »).
return JS::call(vm, *m_capability->resolve(), js_undefined(), values_array);
}
// 15. Return undefined.
return js_undefined();
}
NonnullGCPtr<PromiseAnyRejectElementFunction> PromiseAnyRejectElementFunction::create(Realm& realm, size_t index, PromiseValueList& errors, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements)
{
return realm.heap().allocate<PromiseAnyRejectElementFunction>(realm, index, errors, capability, remaining_elements, realm.intrinsics().function_prototype());
}
PromiseAnyRejectElementFunction::PromiseAnyRejectElementFunction(size_t index, PromiseValueList& errors, NonnullGCPtr<PromiseCapability const> capability, RemainingElements& remaining_elements, Object& prototype)
: PromiseResolvingElementFunction(index, errors, capability, remaining_elements, prototype)
{
}
ThrowCompletionOr<Value> PromiseAnyRejectElementFunction::resolve_element()
{
auto& vm = this->vm();
auto& realm = *vm.current_realm();
// 8. Set errors[index] to x.
m_values->values()[m_index] = vm.argument(0);
// 9. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.
// 10. If remainingElementsCount.[[Value]] is 0, then
if (--m_remaining_elements->value == 0) {
// a. Let error be a newly created AggregateError object.
auto error = AggregateError::create(realm);
// b. Perform ! DefinePropertyOrThrow(error, "errors", PropertyDescriptor { [[Configurable]]: true, [[Enumerable]]: false, [[Writable]]: true, [[Value]]: CreateArrayFromList(errors) }).
auto errors_array = Array::create_from(realm, m_values->values());
MUST(error->define_property_or_throw(vm.names.errors, { .value = errors_array, .writable = true, .enumerable = false, .configurable = true }));
// c. Return ? Call(promiseCapability.[[Reject]], undefined, « error »).
return JS::call(vm, *m_capability->reject(), js_undefined(), error);
}
return js_undefined();
}
}