ladybird/Userland/Libraries/LibJS/Runtime/ModuleNamespaceObject.cpp
Andreas Kling 3c74dc9f4d LibJS: Segregate GC-allocated objects by type
This patch adds two macros to declare per-type allocators:

- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)

When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.

The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.

It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)

There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.

Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
2023-11-19 12:10:31 +01:00

231 lines
9.1 KiB
C++

/*
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/QuickSort.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/ModuleNamespaceObject.h>
namespace JS {
JS_DEFINE_ALLOCATOR(ModuleNamespaceObject);
ModuleNamespaceObject::ModuleNamespaceObject(Realm& realm, Module* module, Vector<DeprecatedFlyString> exports)
: Object(ConstructWithPrototypeTag::Tag, realm.intrinsics().object_prototype(), MayInterfereWithIndexedPropertyAccess::Yes)
, m_module(module)
, m_exports(move(exports))
{
// Note: We just perform step 6 of 10.4.6.12 ModuleNamespaceCreate ( module, exports ), https://tc39.es/ecma262/#sec-modulenamespacecreate
// 6. Let sortedExports be a List whose elements are the elements of exports ordered as if an Array of the same values had been sorted using %Array.prototype.sort% using undefined as comparefn.
quick_sort(m_exports, [&](DeprecatedFlyString const& lhs, DeprecatedFlyString const& rhs) {
return lhs.view() < rhs.view();
});
}
void ModuleNamespaceObject::initialize(Realm& realm)
{
auto& vm = this->vm();
Base::initialize(realm);
// 28.3.1 @@toStringTag, https://tc39.es/ecma262/#sec-@@tostringtag
define_direct_property(vm.well_known_symbol_to_string_tag(), PrimitiveString::create(vm, "Module"_string), 0);
}
// 10.4.6.1 [[GetPrototypeOf]] ( ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-getprototypeof
ThrowCompletionOr<Object*> ModuleNamespaceObject::internal_get_prototype_of() const
{
// 1. Return null.
return nullptr;
}
// 10.4.6.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-setprototypeof-v
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_set_prototype_of(Object* prototype)
{
// 1. Return ! SetImmutablePrototype(O, V).
return MUST(set_immutable_prototype(prototype));
}
// 10.4.6.3 [[IsExtensible]] ( ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-isextensible
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_is_extensible() const
{
// 1. Return false.
return false;
}
// 10.4.6.4 [[PreventExtensions]] ( ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-preventextensions
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_prevent_extensions()
{
// 1. Return true.
return true;
}
// 10.4.6.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-getownproperty-p
ThrowCompletionOr<Optional<PropertyDescriptor>> ModuleNamespaceObject::internal_get_own_property(PropertyKey const& property_key) const
{
// 1. If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).
if (property_key.is_symbol())
return Object::internal_get_own_property(property_key);
// 2. Let exports be O.[[Exports]].
// 3. If P is not an element of exports, return undefined.
auto export_element = m_exports.find(property_key.to_string());
if (export_element.is_end())
return Optional<PropertyDescriptor> {};
// 4. Let value be ? O.[[Get]](P, O).
auto value = TRY(internal_get(property_key, this));
// 5. Return PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.
return PropertyDescriptor { .value = value, .writable = true, .enumerable = true, .configurable = false };
}
// 10.4.6.6 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-defineownproperty-p-desc
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& descriptor)
{
// 1. If Type(P) is Symbol, return ! OrdinaryDefineOwnProperty(O, P, Desc).
if (property_key.is_symbol())
return MUST(Object::internal_define_own_property(property_key, descriptor));
// 2. Let current be ? O.[[GetOwnProperty]](P).
auto current = TRY(internal_get_own_property(property_key));
// 3. If current is undefined, return false.
if (!current.has_value())
return false;
// 4. If Desc has a [[Configurable]] field and Desc.[[Configurable]] is true, return false.
if (descriptor.configurable.has_value() && descriptor.configurable.value())
return false;
// 5. If Desc has an [[Enumerable]] field and Desc.[[Enumerable]] is false, return false.
if (descriptor.enumerable.has_value() && !descriptor.enumerable.value())
return false;
// 6. If IsAccessorDescriptor(Desc) is true, return false.
if (descriptor.is_accessor_descriptor())
return false;
// 7. If Desc has a [[Writable]] field and Desc.[[Writable]] is false, return false.
if (descriptor.writable.has_value() && !descriptor.writable.value())
return false;
// 8. If Desc has a [[Value]] field, return SameValue(Desc.[[Value]], current.[[Value]]).
if (descriptor.value.has_value())
return same_value(descriptor.value.value(), current->value.value());
// 9. Return true.
return true;
}
// 10.4.6.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-hasproperty-p
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_has_property(PropertyKey const& property_key) const
{
// 1. If Type(P) is Symbol, return ! OrdinaryHasProperty(O, P).
if (property_key.is_symbol())
return MUST(Object::internal_has_property(property_key));
// 2. Let exports be O.[[Exports]].
// 3. If P is an element of exports, return true.
auto export_element = m_exports.find(property_key.to_string());
if (!export_element.is_end())
return true;
// 4. Return false.
return false;
}
// 10.4.6.8 [[Get]] ( P, Receiver ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-get-p-receiver
ThrowCompletionOr<Value> ModuleNamespaceObject::internal_get(PropertyKey const& property_key, Value receiver, CacheablePropertyMetadata* cacheable_metadata) const
{
auto& vm = this->vm();
// 1. If Type(P) is Symbol, then
if (property_key.is_symbol()) {
// a. Return ! OrdinaryGet(O, P, Receiver).
return MUST(Object::internal_get(property_key, receiver, cacheable_metadata));
}
// 2. Let exports be O.[[Exports]].
// 3. If P is not an element of exports, return undefined.
auto export_element = m_exports.find(property_key.to_string());
if (export_element.is_end())
return js_undefined();
// 4. Let m be O.[[Module]].
// 5. Let binding be ! m.ResolveExport(P).
auto binding = MUST(m_module->resolve_export(vm, property_key.to_string()));
// 6. Assert: binding is a ResolvedBinding Record.
VERIFY(binding.is_valid());
// 7. Let targetModule be binding.[[Module]].
auto target_module = binding.module;
// 8. Assert: targetModule is not undefined.
VERIFY(target_module);
// 9. If binding.[[BindingName]] is namespace, then
if (binding.is_namespace()) {
// a. Return ? GetModuleNamespace(targetModule).
return TRY(target_module->get_module_namespace(vm));
}
// 10. Let targetEnv be targetModule.[[Environment]].
auto* target_environment = target_module->environment();
// 11. If targetEnv is empty, throw a ReferenceError exception.
if (!target_environment)
return vm.throw_completion<ReferenceError>(ErrorType::ModuleNoEnvironment);
// 12. Return ? targetEnv.GetBindingValue(binding.[[BindingName]], true).
return target_environment->get_binding_value(vm, binding.export_name, true);
}
// 10.4.6.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-set-p-v-receiver
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_set(PropertyKey const&, Value, Value, CacheablePropertyMetadata*)
{
// 1. Return false.
return false;
}
// 10.4.6.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-delete-p
ThrowCompletionOr<bool> ModuleNamespaceObject::internal_delete(PropertyKey const& property_key)
{
// 1. If Type(P) is Symbol, then
if (property_key.is_symbol()) {
// a. Return ! OrdinaryDelete(O, P).
return MUST(Object::internal_delete(property_key));
}
// 2. Let exports be O.[[Exports]].
// 3. If P is an element of exports, return false.
auto export_element = m_exports.find(property_key.to_string());
if (!export_element.is_end())
return false;
// 4. Return true.
return true;
}
// 10.4.6.11 [[OwnPropertyKeys]] ( ), https://tc39.es/ecma262/#sec-module-namespace-exotic-objects-ownpropertykeys
ThrowCompletionOr<MarkedVector<Value>> ModuleNamespaceObject::internal_own_property_keys() const
{
// 1. Let exports be O.[[Exports]].
// NOTE: We only add the exports after we know the size of symbolKeys
MarkedVector<Value> exports { vm().heap() };
// 2. Let symbolKeys be OrdinaryOwnPropertyKeys(O).
auto symbol_keys = MUST(Object::internal_own_property_keys());
// 3. Return the list-concatenation of exports and symbolKeys.
exports.ensure_capacity(m_exports.size() + symbol_keys.size());
for (auto const& export_name : m_exports)
exports.unchecked_append(PrimitiveString::create(vm(), export_name));
exports.extend(symbol_keys);
return exports;
}
}