ladybird/Userland/Libraries/LibJS/Runtime/Intl/ListFormat.cpp
Andreas Kling 3c74dc9f4d LibJS: Segregate GC-allocated objects by type
This patch adds two macros to declare per-type allocators:

- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)

When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.

The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.

It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)

There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.

Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
2023-11-19 12:10:31 +01:00

285 lines
9.5 KiB
C++

/*
* Copyright (c) 2021-2023, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/StringBuilder.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/ListFormat.h>
#include <LibJS/Runtime/Iterator.h>
namespace JS::Intl {
JS_DEFINE_ALLOCATOR(ListFormat);
// 13 ListFormat Objects, https://tc39.es/ecma402/#listformat-objects
ListFormat::ListFormat(Object& prototype)
: Object(ConstructWithPrototypeTag::Tag, prototype)
{
}
void ListFormat::set_type(StringView type)
{
if (type == "conjunction"sv) {
m_type = Type::Conjunction;
} else if (type == "disjunction"sv) {
m_type = Type::Disjunction;
} else if (type == "unit"sv) {
m_type = Type::Unit;
} else {
VERIFY_NOT_REACHED();
}
}
StringView ListFormat::type_string() const
{
switch (m_type) {
case Type::Conjunction:
return "conjunction"sv;
case Type::Disjunction:
return "disjunction"sv;
case Type::Unit:
return "unit"sv;
default:
VERIFY_NOT_REACHED();
}
}
// 13.5.1 DeconstructPattern ( pattern, placeables ), https://tc39.es/ecma402/#sec-deconstructpattern
Vector<PatternPartition> deconstruct_pattern(StringView pattern, Placeables placeables)
{
// 1. Let patternParts be ! PartitionPattern(pattern).
auto pattern_parts = partition_pattern(pattern);
// 2. Let result be a new empty List.
Vector<PatternPartition> result {};
// 3. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. Let part be patternPart.[[Type]].
auto part = pattern_part.type;
// b. If part is "literal", then
if (part == "literal"sv) {
// i. Append Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } to result.
result.append({ part, move(pattern_part.value) });
}
// c. Else,
else {
// i. Assert: placeables has a field [[<part>]].
// ii. Let subst be placeables.[[<part>]].
auto subst = placeables.get(part);
VERIFY(subst.has_value());
subst.release_value().visit(
// iii. If Type(subst) is List, then
[&](Vector<PatternPartition>& partition) {
// 1. For each element s of subst, do
// a. Append s to result.
result.extend(move(partition));
},
// iv. Else,
[&](PatternPartition& partition) {
// 1. Append subst to result.
result.append(move(partition));
});
}
}
// 4. Return result.
return result;
}
// 13.5.2 CreatePartsFromList ( listFormat, list ), https://tc39.es/ecma402/#sec-createpartsfromlist
Vector<PatternPartition> create_parts_from_list(ListFormat const& list_format, Vector<String> const& list)
{
auto list_patterns = ::Locale::get_locale_list_patterns(list_format.locale(), list_format.type_string(), list_format.style());
if (!list_patterns.has_value())
return {};
// 1. Let size be the number of elements of list.
auto size = list.size();
// 2. If size is 0, then
if (size == 0) {
// a. Return a new empty List.
return {};
}
// 3. If size is 2, then
if (size == 2) {
// a. Let n be an index into listFormat.[[Templates]] based on listFormat.[[Locale]], list[0], and list[1].
// b. Let pattern be listFormat.[[Templates]][n].[[Pair]].
auto pattern = list_patterns->pair;
// c. Let first be a new Record { [[Type]]: "element", [[Value]]: list[0] }.
PatternPartition first { "element"sv, list[0] };
// d. Let second be a new Record { [[Type]]: "element", [[Value]]: list[1] }.
PatternPartition second { "element"sv, list[1] };
// e. Let placeables be a new Record { [[0]]: first, [[1]]: second }.
Placeables placeables;
placeables.set("0"sv, move(first));
placeables.set("1"sv, move(second));
// f. Return ! DeconstructPattern(pattern, placeables).
return deconstruct_pattern(pattern, move(placeables));
}
// 4. Let last be a new Record { [[Type]]: "element", [[Value]]: list[size - 1] }.
PatternPartition last { "element"sv, list[size - 1] };
// 5. Let parts be « last ».
Vector<PatternPartition> parts { move(last) };
// The spec does not say to do this, but because size_t is unsigned, we need to take care not to wrap around 0.
if (size == 1)
return parts;
// 6. Let i be size - 2.
size_t i = size - 2;
// 7. Repeat, while i ≥ 0,
do {
// a. Let head be a new Record { [[Type]]: "element", [[Value]]: list[i] }.
PatternPartition head { "element"sv, list[i] };
// b. Let n be an implementation-defined index into listFormat.[[Templates]] based on listFormat.[[Locale]], head, and parts.
StringView pattern;
// c. If i is 0, then
if (i == 0) {
// i. Let pattern be listFormat.[[Templates]][n].[[Start]].
pattern = list_patterns->start;
}
// d. Else if i is less than size - 2, then
else if (i < (size - 2)) {
// i. Let pattern be listFormat.[[Templates]][n].[[Middle]].
pattern = list_patterns->middle;
}
// e. Else,
else {
// i. Let pattern be listFormat.[[Templates]][n].[[End]].
pattern = list_patterns->end;
}
// f. Let placeables be a new Record { [[0]]: head, [[1]]: parts }.
Placeables placeables;
placeables.set("0"sv, move(head));
placeables.set("1"sv, move(parts));
// g. Set parts to ! DeconstructPattern(pattern, placeables).
parts = deconstruct_pattern(pattern, move(placeables));
// h. Decrement i by 1.
} while (i-- != 0);
// 8. Return parts.
return parts;
}
// 13.5.3 FormatList ( listFormat, list ), https://tc39.es/ecma402/#sec-formatlist
String format_list(ListFormat const& list_format, Vector<String> const& list)
{
// 1. Let parts be ! CreatePartsFromList(listFormat, list).
auto parts = create_parts_from_list(list_format, list);
// 2. Let result be an empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(part.value);
}
// 4. Return result.
return MUST(result.to_string());
}
// 13.5.4 FormatListToParts ( listFormat, list ), https://tc39.es/ecma402/#sec-formatlisttoparts
NonnullGCPtr<Array> format_list_to_parts(VM& vm, ListFormat const& list_format, Vector<String> const& list)
{
auto& realm = *vm.current_realm();
// 1. Let parts be ! CreatePartsFromList(listFormat, list).
auto parts = create_parts_from_list(list_format, list);
// 2. Let result be ! ArrayCreate(0).
auto result = MUST(Array::create(realm, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto object = Object::create(realm, realm.intrinsics().object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, PrimitiveString::create(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, PrimitiveString::create(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// e. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
// 13.5.5 StringListFromIterable ( iterable ), https://tc39.es/ecma402/#sec-createstringlistfromiterable
ThrowCompletionOr<Vector<String>> string_list_from_iterable(VM& vm, Value iterable)
{
// 1. If iterable is undefined, then
if (iterable.is_undefined()) {
// a. Return a new empty List.
return Vector<String> {};
}
// 2. Let iteratorRecord be ? GetIterator(iterable, sync).
auto iterator_record = TRY(get_iterator(vm, iterable, IteratorHint::Sync));
// 3. Let list be a new empty List.
Vector<String> list;
// 4. Let next be true.
GCPtr<Object> next;
// 5. Repeat, while next is not false,
do {
// a. Set next to ? IteratorStep(iteratorRecord).
next = TRY(iterator_step(vm, iterator_record));
// b. If next is not false, then
if (next != nullptr) {
// i. Let nextValue be ? IteratorValue(next).
auto next_value = TRY(iterator_value(vm, *next));
// ii. If Type(nextValue) is not String, then
if (!next_value.is_string()) {
// 1. Let error be ThrowCompletion(a newly created TypeError object).
auto error = vm.throw_completion<TypeError>(ErrorType::NotAString, next_value);
// 2. Return ? IteratorClose(iteratorRecord, error).
return iterator_close(vm, iterator_record, move(error));
}
// iii. Append nextValue to the end of the List list.
list.append(next_value.as_string().utf8_string());
}
} while (next != nullptr);
// 6. Return list.
return list;
}
}