
Previously, constructing a `UnsignedBigInteger::from_base()` could produce an incorrect result if the input string contained a valid Base36 digit that was out of range of the given base. The same method would also crash if the input string contained an invalid Base36 digit. An error is now returned in both these cases. Constructing a BigFraction from string is now also fallible, so that we can handle the case where we are given an input string with invalid digits.
394 lines
13 KiB
C++
394 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "SignedBigInteger.h"
|
|
#include <AK/StringBuilder.h>
|
|
#include <math.h>
|
|
|
|
namespace Crypto {
|
|
|
|
SignedBigInteger::SignedBigInteger(double value)
|
|
: m_sign(value < 0.0)
|
|
, m_unsigned_data(fabs(value))
|
|
{
|
|
}
|
|
|
|
SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length)
|
|
{
|
|
bool sign = *ptr;
|
|
auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
|
|
return { move(unsigned_data), sign };
|
|
}
|
|
|
|
size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
|
|
{
|
|
// FIXME: Support this:
|
|
// m <0XX> -> m <XX> (if remove_leading_zeros)
|
|
VERIFY(!remove_leading_zeros);
|
|
|
|
data[0] = m_sign;
|
|
auto bytes_view = data.slice(1, data.size() - 1);
|
|
return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1;
|
|
}
|
|
|
|
ErrorOr<SignedBigInteger> SignedBigInteger::from_base(u16 N, StringView str)
|
|
{
|
|
auto sign = false;
|
|
if (str.length() > 1) {
|
|
auto maybe_sign = str[0];
|
|
if (maybe_sign == '-') {
|
|
str = str.substring_view(1);
|
|
sign = true;
|
|
}
|
|
if (maybe_sign == '+')
|
|
str = str.substring_view(1);
|
|
}
|
|
auto unsigned_data = TRY(UnsignedBigInteger::from_base(N, str));
|
|
return SignedBigInteger { move(unsigned_data), sign };
|
|
}
|
|
|
|
ErrorOr<String> SignedBigInteger::to_base(u16 N) const
|
|
{
|
|
StringBuilder builder;
|
|
|
|
if (m_sign)
|
|
TRY(builder.try_append('-'));
|
|
|
|
auto unsigned_as_base = TRY(m_unsigned_data.to_base(N));
|
|
TRY(builder.try_append(unsigned_as_base.bytes_as_string_view()));
|
|
|
|
return builder.to_string();
|
|
}
|
|
|
|
ByteString SignedBigInteger::to_base_deprecated(u16 N) const
|
|
{
|
|
return MUST(to_base(N)).to_byte_string();
|
|
}
|
|
|
|
u64 SignedBigInteger::to_u64() const
|
|
{
|
|
u64 unsigned_value = m_unsigned_data.to_u64();
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN
|
|
}
|
|
|
|
double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
|
|
{
|
|
double unsigned_value = m_unsigned_data.to_double(rounding_mode);
|
|
if (!m_sign)
|
|
return unsigned_value;
|
|
|
|
VERIFY(!is_zero());
|
|
return -unsigned_value;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const
|
|
{
|
|
// If both are of the same sign, just add the unsigned data and return.
|
|
if (m_sign == other.m_sign)
|
|
return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
|
|
|
|
// One value is signed while the other is not.
|
|
return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const
|
|
{
|
|
// If the signs are different, convert the op to an addition.
|
|
if (m_sign != other.m_sign) {
|
|
// -x - y = - (x + y)
|
|
// x - -y = (x + y)
|
|
SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
|
|
if (m_sign)
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
if (!m_sign) {
|
|
// Both operands are positive.
|
|
// x - y = - (y - x)
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return { other.m_unsigned_data.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
// The result will be either zero, or positive.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
|
|
}
|
|
|
|
// Both operands are negative.
|
|
// -x - -y = y - x
|
|
if (m_unsigned_data < other.m_unsigned_data) {
|
|
// The result will be positive.
|
|
return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) };
|
|
}
|
|
// y - x = - (x - y)
|
|
if (m_unsigned_data > other.m_unsigned_data) {
|
|
// The result will be negative.
|
|
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true };
|
|
}
|
|
// Both operands have the same magnitude, the result is positive zero.
|
|
return SignedBigInteger { 0 };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign) {
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), true };
|
|
|
|
return { other.minus(m_unsigned_data), false };
|
|
}
|
|
|
|
return { m_unsigned_data.plus(other), false };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return { m_unsigned_data.plus(m_unsigned_data), true };
|
|
|
|
if (other < m_unsigned_data)
|
|
return { m_unsigned_data.minus(other), false };
|
|
|
|
return { other.minus(m_unsigned_data), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const
|
|
{
|
|
// Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude.
|
|
// In two's complement, -x := ~x + 1.
|
|
// Hence, ~x == -x -1 == -(x + 1).
|
|
SignedBigInteger result = plus(SignedBigInteger { 1 });
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
|
|
{
|
|
return { unsigned_value().multiplied_by(other), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
|
|
{
|
|
auto division_result = unsigned_value().divided_by(divisor);
|
|
return {
|
|
{ move(division_result.quotient), m_sign },
|
|
{ move(division_result.remainder), m_sign },
|
|
};
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const
|
|
{
|
|
// See bitwise_and() for derivations.
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_or(other.unsigned_value()), false };
|
|
|
|
// -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field.
|
|
// That can be simplified to:
|
|
// -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1
|
|
// This saves one ~.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true };
|
|
}
|
|
|
|
// -(A | -B) == ~A & (B - 1) + 1
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const
|
|
{
|
|
if (!is_negative() && !other.is_negative())
|
|
return { unsigned_value().bitwise_and(other.unsigned_value()), false };
|
|
|
|
// These two just use that -x == ~x + 1 (see below).
|
|
|
|
// -A & B == (~A + 1) & B.
|
|
if (is_negative() && !other.is_negative()) {
|
|
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false };
|
|
}
|
|
|
|
// A & -B == A & (~B + 1).
|
|
if (!is_negative() && other.is_negative()) {
|
|
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
|
|
return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false };
|
|
}
|
|
|
|
// Both numbers are negative.
|
|
// x + ~x == 0xff...ff, up to however many bits x is wide.
|
|
// In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out.
|
|
// Rearranging terms, ~x = -x - 1 (eq1).
|
|
// Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2).
|
|
// Since both numbers are negative, we want to compute -A & -B.
|
|
// Per (eq2):
|
|
// -A & -B == ~(A - 1) & ~(B - 1)
|
|
// Inverting both sides:
|
|
// ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1).
|
|
// Applying (q1) on the LHS:
|
|
// -(-A & -B) - 1 == (A - 1) | (B - 1)
|
|
// Adding 1 on both sides and then multiplying both sides by -1:
|
|
// -A & -B == -( (A - 1) | (B - 1) + 1)
|
|
// So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1.
|
|
// This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s.
|
|
return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const
|
|
{
|
|
return bitwise_or(other).minus(bitwise_and(other));
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign && m_unsigned_data != 0)
|
|
return false;
|
|
return m_unsigned_data == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data != other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const
|
|
{
|
|
if (m_sign)
|
|
return true;
|
|
return m_unsigned_data < other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
|
|
{
|
|
return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const
|
|
{
|
|
bool result_sign = m_sign ^ other.m_sign;
|
|
return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
|
|
}
|
|
|
|
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const
|
|
{
|
|
// Aa / Bb -> (A^B)q, Ar
|
|
bool result_sign = m_sign ^ divisor.m_sign;
|
|
auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
|
|
return {
|
|
{ move(unsigned_division_result.quotient), result_sign },
|
|
{ move(unsigned_division_result.remainder), m_sign }
|
|
};
|
|
}
|
|
|
|
FLATTEN SignedBigInteger SignedBigInteger::negated_value() const
|
|
{
|
|
auto result { *this };
|
|
result.negate();
|
|
return result;
|
|
}
|
|
|
|
u32 SignedBigInteger::hash() const
|
|
{
|
|
return m_unsigned_data.hash() * (1 - (2 * m_sign));
|
|
}
|
|
|
|
void SignedBigInteger::set_bit_inplace(size_t bit_index)
|
|
{
|
|
m_unsigned_data.set_bit_inplace(bit_index);
|
|
}
|
|
|
|
bool SignedBigInteger::operator==(SignedBigInteger const& other) const
|
|
{
|
|
if (is_invalid() != other.is_invalid())
|
|
return false;
|
|
|
|
if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
|
|
return true;
|
|
|
|
return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator!=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator<(SignedBigInteger const& other) const
|
|
{
|
|
if (m_sign ^ other.m_sign)
|
|
return m_sign;
|
|
|
|
if (m_sign)
|
|
return other.m_unsigned_data < m_unsigned_data;
|
|
|
|
return m_unsigned_data < other.m_unsigned_data;
|
|
}
|
|
|
|
bool SignedBigInteger::operator<=(SignedBigInteger const& other) const
|
|
{
|
|
return *this < other || *this == other;
|
|
}
|
|
|
|
bool SignedBigInteger::operator>(SignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
|
|
{
|
|
return !(*this < other);
|
|
}
|
|
|
|
UnsignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
|
|
{
|
|
bool bigint_is_negative = m_sign;
|
|
|
|
bool value_is_negative = value < 0;
|
|
|
|
if (value_is_negative != bigint_is_negative)
|
|
return bigint_is_negative ? UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt : UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
|
|
|
|
// Now both bigint and value have the same sign, so let's compare our magnitudes.
|
|
auto magnitudes_compare_result = m_unsigned_data.compare_to_double(fabs(value));
|
|
|
|
// If our mangnitudes are euqal, then we're equal.
|
|
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
|
|
return UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
|
|
|
|
// If we're negative, revert the comparison result, otherwise return the same result.
|
|
if (value_is_negative) {
|
|
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
|
|
return UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
|
|
else
|
|
return UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
|
|
} else {
|
|
return magnitudes_compare_result;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Crypto::SignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value)
|
|
{
|
|
if (value.is_negative())
|
|
TRY(fmtbuilder.put_string("-"sv));
|
|
return Formatter<Crypto::UnsignedBigInteger>::format(fmtbuilder, value.unsigned_value());
|
|
}
|