ladybird/Kernel/Heap/kmalloc.cpp
Tom 476f17b3f1 Kernel: Merge PurgeableVMObject into AnonymousVMObject
This implements memory commitments and lazy-allocation of committed
memory.
2021-01-01 23:43:44 +01:00

294 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/SpinLock.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/MemoryManager.h>
#define SANITIZE_KMALLOC
#define CHUNK_SIZE 32
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (2 * MiB)
static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
static void kmalloc_allocate_backup_memory();
struct KmallocGlobalHeap {
struct ExpandGlobalHeap {
KmallocGlobalHeap& m_global_heap;
ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
: m_global_heap(global_heap)
{
}
bool m_adding { false };
bool add_memory(size_t allocation_request)
{
if (!MemoryManager::is_initialized()) {
klog() << "kmalloc(): Cannot expand heap before MM is initialized!";
return false;
}
ASSERT(!m_adding);
TemporaryChange change(m_adding, true);
// At this point we have very little memory left. Any attempt to
// kmalloc() could fail, so use our backup memory first, so we
// can't really reliably allocate even a new region of memory.
// This is why we keep a backup region, which we can
auto region = move(m_global_heap.m_backup_memory);
if (!region) {
// Be careful to not log too much here. We don't want to trigger
// any further calls to kmalloc(). We're already out of memory
// and don't have any backup memory, either!
klog() << "kmalloc(): Cannot expand heap: no backup memory";
return false;
}
// At this point we should have at least enough memory from the
// backup region to be able to log properly
klog() << "kmalloc(): Adding memory to heap at " << region->vaddr() << ", bytes: " << region->size();
auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
// Since we pulled in our backup heap, make sure we allocate another
// backup heap before returning. Otherwise we potentially lose
// the ability to expand the heap next time we get called.
ScopeGuard guard([&]() {
// We may need to defer allocating backup memory because the
// heap expansion may have been triggered while holding some
// other spinlock. If the expansion happens to need the same
// spinlock we would deadlock. So, if we're in any lock, defer
Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory);
});
// Now that we added our backup memory, check if the backup heap
// was big enough to likely satisfy the request
if (subheap.free_bytes() < allocation_request) {
// Looks like we probably need more
size_t memory_size = PAGE_ROUND_UP(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
// Add some more to the new heap. We're already using it for other
// allocations not including the original allocation_request
// that triggered heap expansion. If we don't allocate
memory_size += 1 * MiB;
region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write, false, AllocationStrategy::AllocateNow);
if (region) {
klog() << "kmalloc(): Adding even more memory to heap at " << region->vaddr() << ", bytes: " << region->size();
m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
} else {
klog() << "kmalloc(): Could not expand heap to satisfy allocation of " << allocation_request << " bytes";
return false;
}
}
return true;
}
bool remove_memory(void* memory)
{
// This is actually relatively unlikely to happen, because it requires that all
// allocated memory in a subheap to be freed. Only then the subheap can be removed...
for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
auto region = m_global_heap.m_subheap_memory.take(i);
if (!m_global_heap.m_backup_memory) {
klog() << "kmalloc(): Using removed memory as backup: " << region->vaddr() << ", bytes: " << region->size();
m_global_heap.m_backup_memory = move(region);
} else {
klog() << "kmalloc(): Queue removing memory from heap at " << region->vaddr() << ", bytes: " << region->size();
Processor::deferred_call_queue([this, region = move(region)]() mutable {
// We need to defer freeing the region to prevent a potential
// deadlock since we are still holding the kmalloc lock
// We don't really need to do anything other than holding
// onto the region. Unless we already used the backup
// memory, in which case we want to use the region as the
// new backup.
ScopedSpinLock lock(s_lock);
if (!m_global_heap.m_backup_memory) {
klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be used as new backup";
m_global_heap.m_backup_memory = move(region);
} else {
klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be freed now";
}
});
}
return true;
}
}
klog() << "kmalloc(): Cannot remove memory from heap: " << VirtualAddress(memory);
return false;
}
};
typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;
HeapType m_heap;
NonnullOwnPtrVector<Region> m_subheap_memory;
OwnPtr<Region> m_backup_memory;
KmallocGlobalHeap(u8* memory, size_t memory_size)
: m_heap(memory, memory_size, ExpandGlobalHeap(*this))
{
}
void allocate_backup_memory()
{
if (m_backup_memory)
return;
m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write, false, AllocationStrategy::AllocateNow);
}
size_t backup_memory_bytes() const
{
return m_backup_memory ? m_backup_memory->size() : 0;
}
};
static KmallocGlobalHeap* g_kmalloc_global;
// We need to make sure to not stomp on global variables or other parts
// of the kernel image!
extern u32 end_of_kernel_image;
u8* const kmalloc_start = (u8*)PAGE_ROUND_UP(&end_of_kernel_image);
u8* const kmalloc_end = kmalloc_start + (ETERNAL_RANGE_SIZE + POOL_SIZE) + sizeof(KmallocGlobalHeap);
#define ETERNAL_BASE (kmalloc_start + sizeof(KmallocGlobalHeap))
#define KMALLOC_BASE (ETERNAL_BASE + ETERNAL_RANGE_SIZE)
static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;
static void kmalloc_allocate_backup_memory()
{
g_kmalloc_global->allocate_backup_memory();
}
void kmalloc_enable_expand()
{
g_kmalloc_global->allocate_backup_memory();
}
void kmalloc_init()
{
memset((void*)KMALLOC_BASE, 0, POOL_SIZE);
g_kmalloc_global = new (kmalloc_start) KmallocGlobalHeap(KMALLOC_BASE, POOL_SIZE); // Place heap at kmalloc_start
s_lock.initialize();
s_next_eternal_ptr = (u8*)ETERNAL_BASE;
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
}
void* kmalloc_eternal(size_t size)
{
size = round_up_to_power_of_two(size, sizeof(void*));
ScopedSpinLock lock(s_lock);
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
g_kmalloc_bytes_eternal += size;
return ptr;
}
void* kmalloc_impl(size_t size)
{
ScopedSpinLock lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbg() << "kmalloc(" << size << ")";
Kernel::dump_backtrace();
}
void* ptr = g_kmalloc_global->m_heap.allocate(size);
if (!ptr) {
klog() << "kmalloc(): PANIC! Out of memory (no suitable block for size " << size << ")";
Kernel::dump_backtrace();
Processor::halt();
}
return ptr;
}
void kfree(void* ptr)
{
if (!ptr)
return;
ScopedSpinLock lock(s_lock);
++g_kfree_call_count;
g_kmalloc_global->m_heap.deallocate(ptr);
}
void* krealloc(void* ptr, size_t new_size)
{
ScopedSpinLock lock(s_lock);
return g_kmalloc_global->m_heap.reallocate(ptr, new_size);
}
void* operator new(size_t size)
{
return kmalloc(size);
}
void* operator new[](size_t size)
{
return kmalloc(size);
}
void get_kmalloc_stats(kmalloc_stats& stats)
{
ScopedSpinLock lock(s_lock);
stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
stats.bytes_eternal = g_kmalloc_bytes_eternal;
stats.kmalloc_call_count = g_kmalloc_call_count;
stats.kfree_call_count = g_kfree_call_count;
}