ladybird/Userland/Libraries/LibJS/Bytecode/Op.cpp
Hendiadyoin1 4235b2020f LibJS: Switch to array-calls in the bytecode vm
This will make it easier to implement spreading arguments.
2022-10-01 00:04:02 +01:00

1223 lines
48 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/HashTable.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/DeclarativeEnvironment.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Environment.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Iterator.h>
#include <LibJS/Runtime/IteratorOperations.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/ObjectEnvironment.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/Value.h>
namespace JS::Bytecode {
String Instruction::to_string(Bytecode::Executable const& executable) const
{
#define __BYTECODE_OP(op) \
case Instruction::Type::op: \
return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
switch (type()) {
ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
default:
VERIFY_NOT_REACHED();
}
#undef __BYTECODE_OP
}
}
namespace JS::Bytecode::Op {
static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
{
auto& vm = interpreter.vm();
if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
// The generator should only pass us functions for getters and setters.
VERIFY(value.is_function());
}
switch (kind) {
case PropertyKind::Getter: {
auto& function = value.as_function();
if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
break;
}
case PropertyKind::Setter: {
auto& function = value.as_function();
if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
break;
}
case PropertyKind::KeyValue: {
bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
if (!succeeded && vm.in_strict_mode())
return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
break;
}
case PropertyKind::Spread:
TRY(object->copy_data_properties(vm, value, {}));
break;
case PropertyKind::ProtoSetter:
if (value.is_object() || value.is_null())
MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
break;
}
return {};
}
ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.reg(m_src);
return {};
}
ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = m_value;
return {};
}
ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.reg(m_dst) = interpreter.accumulator();
return {};
}
static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
{
return Value(!TRY(is_loosely_equal(vm, src1, src2)));
}
static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
{
return Value(TRY(is_loosely_equal(vm, src1, src2)));
}
static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
{
return Value(!is_strictly_equal(src1, src2));
}
static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
{
return Value(is_strictly_equal(src1, src2));
}
#define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto& vm = interpreter.vm(); \
auto lhs = interpreter.reg(m_lhs_reg); \
auto rhs = interpreter.accumulator(); \
interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
return {}; \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
}
JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
static ThrowCompletionOr<Value> not_(VM&, Value value)
{
return Value(!value.to_boolean());
}
static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
{
return Value(js_string(vm, value.typeof()));
}
#define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto& vm = interpreter.vm(); \
interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
return {}; \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return #OpTitleCase; \
}
JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
return {};
}
ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto* array = MUST(Array::create(interpreter.realm(), 0));
for (size_t i = 0; i < m_element_count; i++) {
auto& value = interpreter.reg(Register(m_elements[0].index() + i));
array->indexed_properties().put(i, value, default_attributes);
}
interpreter.accumulator() = array;
return {};
}
// FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
// Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
static Object* iterator_to_object(VM& vm, Iterator iterator)
{
auto& realm = *vm.current_realm();
auto* object = Object::create(realm, nullptr);
object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
object->define_direct_property(vm.names.next, iterator.next_method, 0);
object->define_direct_property(vm.names.done, Value(iterator.done), 0);
return object;
}
static Iterator object_to_iterator(VM& vm, Object& object)
{
return Iterator {
.iterator = &MUST(object.get(vm.names.iterator)).as_object(),
.next_method = MUST(object.get(vm.names.next)),
.done = MUST(object.get(vm.names.done)).as_bool()
};
}
ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
auto iterator = object_to_iterator(vm, *iterator_object);
auto* array = MUST(Array::create(interpreter.realm(), 0));
size_t index = 0;
while (true) {
auto* iterator_result = TRY(iterator_next(vm, iterator));
auto complete = TRY(iterator_complete(vm, *iterator_result));
if (complete) {
interpreter.accumulator() = array;
return {};
}
auto value = TRY(iterator_value(vm, *iterator_result));
MUST(array->create_data_property_or_throw(index, value));
index++;
}
return {};
}
ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
return {};
}
ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& realm = *vm.current_realm();
interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
return {};
}
ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto source = interpreter.current_executable().get_string(m_source_index);
auto flags = interpreter.current_executable().get_string(m_flags_index);
interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
return {};
}
ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& realm = *vm.current_realm();
auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
HashTable<Value, ValueTraits> excluded_names;
for (size_t i = 0; i < m_excluded_names_count; ++i)
excluded_names.set(interpreter.reg(m_excluded_names[i]));
auto own_keys = TRY(from_object->internal_own_property_keys());
for (auto& key : own_keys) {
if (!excluded_names.contains(key)) {
auto property_key = TRY(key.to_property_key(vm));
auto property_value = TRY(from_object->get(property_key));
to_object->define_direct_property(property_key, property_value, JS::default_attributes);
}
}
interpreter.accumulator() = to_object;
return {};
}
ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
return {};
}
ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
auto const& string = interpreter.current_executable().get_identifier(m_identifier);
if (m_cached_environment_coordinate.has_value()) {
auto* environment = vm.running_execution_context().lexical_environment;
for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
environment = environment->outer_environment();
VERIFY(environment);
VERIFY(environment->is_declarative_environment());
if (!environment->is_permanently_screwed_by_eval()) {
return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
}
m_cached_environment_coordinate = {};
}
auto reference = TRY(vm.resolve_binding(string));
if (reference.environment_coordinate().has_value())
m_cached_environment_coordinate = reference.environment_coordinate();
return reference;
};
auto reference = TRY(get_reference());
interpreter.accumulator() = TRY(reference.get_value(vm));
return {};
}
ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const& string = interpreter.current_executable().get_identifier(m_identifier);
auto reference = TRY(vm.resolve_binding(string));
interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
return {};
}
ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto make_and_swap_envs = [&](auto*& old_environment) {
Environment* environment = new_declarative_environment(*old_environment);
swap(old_environment, environment);
return environment;
};
if (m_mode == EnvironmentMode::Lexical)
interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
else if (m_mode == EnvironmentMode::Var)
interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
return {};
}
ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& old_environment = vm.running_execution_context().lexical_environment;
interpreter.saved_lexical_environment_stack().append(old_environment);
auto object = TRY(interpreter.accumulator().to_object(vm));
vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
return {};
}
ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const& name = interpreter.current_executable().get_identifier(m_identifier);
if (m_mode == EnvironmentMode::Lexical) {
VERIFY(!m_is_global);
// Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
// Instead of crashing in there, we'll just raise an exception here.
if (TRY(vm.lexical_environment()->has_binding(name)))
return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
if (m_is_immutable)
vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
else
vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
} else {
if (!m_is_global) {
if (m_is_immutable)
vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
else
vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
} else {
// NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
// The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
}
}
return {};
}
ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const& name = interpreter.current_executable().get_identifier(m_identifier);
auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
auto reference = TRY(vm.resolve_binding(name, environment));
switch (m_initialization_mode) {
case InitializationMode::Initialize:
TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
break;
case InitializationMode::Set:
TRY(reference.put_value(vm, interpreter.accumulator()));
break;
case InitializationMode::InitializeOrSet:
VERIFY(reference.is_environment_reference());
VERIFY(reference.base_environment().is_declarative_environment());
TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
break;
}
return {};
}
ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.accumulator().to_object(vm));
interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
return {};
}
ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.reg(m_base).to_object(vm));
PropertyKey name = interpreter.current_executable().get_identifier(m_property);
auto value = interpreter.accumulator();
return put_by_property_key(object, value, name, interpreter, m_kind);
}
ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.accumulator().to_object(vm));
auto const& identifier = interpreter.current_executable().get_identifier(m_property);
bool strict = vm.in_strict_mode();
auto reference = Reference { object, identifier, {}, strict };
interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
return {};
};
ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.jump(*m_true_target);
return {};
}
ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.accumulator() = TRY(vm.resolve_this_binding());
return {};
}
ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.vm().get_new_target();
return {};
}
void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_true_target.has_value() && &m_true_target->block() == &from)
m_true_target = Label { to };
if (m_false_target.has_value() && &m_false_target->block() == &from)
m_false_target = Label { to };
}
ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.to_boolean())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
return {};
}
ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.is_nullish())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
return {};
}
ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.is_undefined())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
return {};
}
// 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
{
// Note: Any spreading and actual evaluation is handled in preceding opcodes
// Note: The spec uses the concept of a list, while we create a temporary array
// in the preceding opcodes, so we have to convert in a manner that is not
// visible to the user
auto& vm = interpreter.vm();
MarkedVector<Value> argument_values { vm.heap() };
auto arguments = interpreter.accumulator();
auto& argument_array = arguments.as_array();
auto array_length = argument_array.indexed_properties().array_like_size();
argument_values.ensure_capacity(array_length);
for (size_t i = 0; i < array_length; ++i) {
if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
argument_values.append(maybe_value.release_value().value);
else
argument_values.append(js_undefined());
}
return argument_values;
}
ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto callee = interpreter.reg(m_callee);
if (m_type == CallType::Call && !callee.is_function())
return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "function"sv);
if (m_type == CallType::Construct && !callee.is_constructor())
return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), "constructor"sv);
auto& function = callee.as_function();
auto this_value = interpreter.reg(m_this_value);
auto argument_values = argument_list_evaluation(interpreter);
Value return_value;
if (m_type == CallType::Call)
return_value = TRY(call(vm, function, this_value, move(argument_values)));
else
return_value = TRY(construct(vm, function, move(argument_values)));
interpreter.accumulator() = return_value;
return {};
}
// 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
// 1. Let newTarget be GetNewTarget().
auto new_target = vm.get_new_target();
// 2. Assert: Type(newTarget) is Object.
VERIFY(new_target.is_object());
// 3. Let func be GetSuperConstructor().
auto* func = get_super_constructor(vm);
// 4. Let argList be ? ArgumentListEvaluation of Arguments.
MarkedVector<Value> arg_list { vm.heap() };
if (m_is_synthetic) {
auto const& value = interpreter.accumulator();
VERIFY(value.is_object() && is<Array>(value.as_object()));
auto const& array_value = static_cast<Array const&>(value.as_object());
auto length = MUST(length_of_array_like(vm, array_value));
for (size_t i = 0; i < length; ++i)
arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
} else {
arg_list = argument_list_evaluation(interpreter);
}
// 5. If IsConstructor(func) is false, throw a TypeError exception.
if (!Value(func).is_constructor())
return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
// 6. Let result be ? Construct(func, argList, newTarget).
auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
// 7. Let thisER be GetThisEnvironment().
auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
// 8. Perform ? thisER.BindThisValue(result).
TRY(this_environment.bind_this_value(vm, result));
// 9. Let F be thisER.[[FunctionObject]].
auto& f = this_environment.function_object();
// 10. Assert: F is an ECMAScript function object.
// NOTE: This is implied by the strong C++ type.
// 11. Perform ? InitializeInstanceElements(result, F).
TRY(vm.initialize_instance_elements(*result, f));
// 12. Return result.
interpreter.accumulator() = result;
return {};
}
ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
return {};
}
ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
return {};
}
ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() + 1);
else
interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
return {};
}
ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() - 1);
else
interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
return {};
}
ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
{
return throw_completion(interpreter.accumulator());
}
ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
interpreter.jump(m_entry_point);
return {};
}
void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_entry_point.block() == &from)
m_entry_point = Label { to };
if (m_handler_target.has_value() && &m_handler_target->block() == &from)
m_handler_target = Label { to };
if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
m_finalizer_target = Label { to };
}
ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.leave_unwind_context();
interpreter.jump(m_next_target);
return {};
}
void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_next_target.block() == &from)
m_next_target = Label { to };
}
ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (m_mode == EnvironmentMode::Lexical)
interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
if (m_mode == EnvironmentMode::Var)
interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
return {};
}
ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.leave_unwind_context();
return {};
}
ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
{
return interpreter.continue_pending_unwind(m_resume_target);
}
void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_resume_target.block() == &from)
m_resume_target = Label { to };
}
ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
interpreter.vm().running_execution_context().lexical_environment = environment;
interpreter.vm().running_execution_context().variable_environment = environment;
return {};
}
ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto yielded_value = interpreter.accumulator().value_or(js_undefined());
auto object = Object::create(interpreter.realm(), nullptr);
object->define_direct_property("result", yielded_value, JS::default_attributes);
if (m_continuation_label.has_value())
object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
else
object->define_direct_property("continuation", Value(0), JS::default_attributes);
interpreter.do_return(object);
return {};
}
void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
m_continuation_label = Label { to };
}
ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.reg(m_base).to_object(vm));
auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
interpreter.accumulator() = TRY(object->get(property_key));
return {};
}
ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.reg(m_base).to_object(vm));
auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
}
ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.reg(m_base).to_object(vm));
auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
bool strict = vm.in_strict_mode();
auto reference = Reference { object, property_key, {}, strict };
interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
return {};
}
ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
interpreter.accumulator() = iterator_to_object(vm, iterator);
return {};
}
// 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
{
// While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
// 1- Returned property keys do not include keys that are Symbols
// 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
// 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
// 4- A property name will be returned by the iterator's next method at most once in any enumeration.
// 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
// but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
// 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
// 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
// 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
// 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
// Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
// Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
auto& vm = interpreter.vm();
auto* object = TRY(interpreter.accumulator().to_object(vm));
// Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
// so we just keep the order consistent anyway.
OrderedHashTable<PropertyKey> properties;
HashTable<Object*> seen_objects;
// Collect all keys immediately (invariant no. 5)
for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
seen_objects.set(object_to_check);
for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
properties.set(TRY(PropertyKey::from_value(vm, key)));
}
}
Iterator iterator {
.iterator = object,
.next_method = NativeFunction::create(
interpreter.realm(),
[seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
auto& realm = *vm.current_realm();
auto iterated_object_value = vm.this_value();
if (!iterated_object_value.is_object())
return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
auto& iterated_object = iterated_object_value.as_object();
auto* result_object = Object::create(realm, nullptr);
while (true) {
if (items.is_empty()) {
result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
return result_object;
}
auto it = items.begin();
auto key = *it;
items.remove(it);
// If the key was already seen, skip over it (invariant no. 4)
auto result = seen_items.set(key);
if (result != AK::HashSetResult::InsertedNewEntry)
continue;
// If the property is deleted, don't include it (invariant no. 2)
if (!TRY(iterated_object.has_property(key)))
continue;
result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
if (key.is_number())
result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
else if (key.is_string())
result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
else
VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
return result_object;
}
},
1,
vm.names.next),
.done = false,
};
interpreter.accumulator() = iterator_to_object(vm, move(iterator));
return {};
}
ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
auto iterator = object_to_iterator(vm, *iterator_object);
interpreter.accumulator() = TRY(iterator_next(vm, iterator));
return {};
}
ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
auto complete = TRY(iterator_complete(vm, *iterator_result));
interpreter.accumulator() = Value(complete);
return {};
}
ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
return {};
}
ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto name = m_class_expression.name();
auto scope = interpreter.ast_interpreter_scope();
auto& ast_interpreter = scope.interpreter();
auto class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
interpreter.accumulator() = class_object;
return {};
}
// 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
// 1. Let val be the result of evaluating UnaryExpression.
auto const& string = interpreter.current_executable().get_identifier(m_identifier);
auto reference = TRY(vm.resolve_binding(string));
// 2. If val is a Reference Record, then
// a. If IsUnresolvableReference(val) is true, return "undefined".
if (reference.is_unresolvable()) {
interpreter.accumulator() = js_string(vm, "undefined"sv);
return {};
}
// 3. Set val to ? GetValue(val).
auto value = TRY(reference.get_value(vm));
// 4. NOTE: This step is replaced in section B.3.6.3.
// 5. Return a String according to Table 41.
interpreter.accumulator() = js_string(vm, value.typeof());
return {};
}
String Load::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Load {}", m_src);
}
String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("LoadImmediate {}", m_value);
}
String Store::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Store {}", m_dst);
}
String NewBigInt::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
}
String NewArray::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.append("NewArray"sv);
if (m_element_count != 0) {
builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
}
return builder.to_string();
}
String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
{
return "IteratorToArray";
}
String NewString::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
}
String NewObject::to_string_impl(Bytecode::Executable const&) const
{
return "NewObject";
}
String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
}
String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
if (m_excluded_names_count != 0) {
builder.append(" excluding:["sv);
builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
builder.append(']');
}
return builder.to_string();
}
String ConcatString::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("ConcatString {}", m_lhs);
}
String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
}
String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
}
String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
{
auto mode_string = m_mode == EnvironmentMode::Lexical
? "Lexical"
: "Variable";
return String::formatted("CreateEnvironment mode:{}", mode_string);
}
String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
{
auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
}
String EnterObjectEnvironment::to_string_impl(Executable const&) const
{
return String::formatted("EnterObjectEnvironment");
}
String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
: m_initialization_mode == InitializationMode::Set ? "Set"
: "InitializeOrSet";
auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
}
String PutById::to_string_impl(Bytecode::Executable const& executable) const
{
auto kind = m_kind == PropertyKind::Getter
? "getter"
: m_kind == PropertyKind::Setter
? "setter"
: "property";
return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
}
String GetById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
}
String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
}
String Jump::to_string_impl(Bytecode::Executable const&) const
{
if (m_true_target.has_value())
return String::formatted("Jump {}", *m_true_target);
return String::formatted("Jump <empty>");
}
String JumpConditional::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
}
String JumpNullish::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
}
String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
}
String Call::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
}
String SuperCall::to_string_impl(Bytecode::Executable const&) const
{
return "SuperCall arguments:[...acc]"sv;
}
String NewFunction::to_string_impl(Bytecode::Executable const&) const
{
return "NewFunction";
}
String NewClass::to_string_impl(Bytecode::Executable const&) const
{
return "NewClass";
}
String Return::to_string_impl(Bytecode::Executable const&) const
{
return "Return";
}
String Increment::to_string_impl(Bytecode::Executable const&) const
{
return "Increment";
}
String Decrement::to_string_impl(Bytecode::Executable const&) const
{
return "Decrement";
}
String Throw::to_string_impl(Bytecode::Executable const&) const
{
return "Throw";
}
String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
{
auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
}
String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("FinishUnwind next:{}", m_next_target);
}
String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
{
auto mode_string = m_mode == EnvironmentMode::Lexical
? "Lexical"
: "Variable";
return String::formatted("LeaveEnvironment env:{}", mode_string);
}
String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
{
return "LeaveUnwindContext";
}
String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
}
String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
builder.append("PushDeclarativeEnvironment"sv);
if (!m_variables.is_empty()) {
builder.append(" {"sv);
Vector<String> names;
for (auto& it : m_variables)
names.append(executable.get_string(it.key));
builder.append('}');
builder.join(", "sv, names);
}
return builder.to_string();
}
String Yield::to_string_impl(Bytecode::Executable const&) const
{
if (m_continuation_label.has_value())
return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
return String::formatted("Yield return");
}
String GetByValue::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("GetByValue base:{}", m_base);
}
String PutByValue::to_string_impl(Bytecode::Executable const&) const
{
auto kind = m_kind == PropertyKind::Getter
? "getter"
: m_kind == PropertyKind::Setter
? "setter"
: "property";
return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
}
String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("DeleteByValue base:{}", m_base);
}
String GetIterator::to_string_impl(Executable const&) const
{
return "GetIterator";
}
String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
{
return "GetObjectPropertyIterator";
}
String IteratorNext::to_string_impl(Executable const&) const
{
return "IteratorNext";
}
String IteratorResultDone::to_string_impl(Executable const&) const
{
return "IteratorResultDone";
}
String IteratorResultValue::to_string_impl(Executable const&) const
{
return "IteratorResultValue";
}
String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
{
return "ResolveThisBinding"sv;
}
String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
{
return "GetNewTarget"sv;
}
String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
}
}