
This patch adds two macros to declare per-type allocators: - JS_DECLARE_ALLOCATOR(TypeName) - JS_DEFINE_ALLOCATOR(TypeName) When used, they add a type-specific CellAllocator that the Heap will delegate allocation requests to. The result of this is that GC objects of the same type always end up within the same HeapBlock, drastically reducing the ability to perform type confusion attacks. It also improves HeapBlock utilization, since each block now has cells sized exactly to the type used within that block. (Previously we only had a handful of block sizes available, and most GC allocations ended up with a large amount of slack in their tails.) There is a small performance hit from this, but I'm sure we can make up for it elsewhere. Note that the old size-based allocators still exist, and we fall back to them for any type that doesn't have its own CellAllocator.
108 lines
4.1 KiB
C++
108 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2020, Jack Karamanian <karamanian.jack@gmail.com>
|
|
* Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <LibJS/Runtime/AbstractOperations.h>
|
|
#include <LibJS/Runtime/BoundFunction.h>
|
|
#include <LibJS/Runtime/GlobalObject.h>
|
|
|
|
namespace JS {
|
|
|
|
JS_DEFINE_ALLOCATOR(BoundFunction);
|
|
|
|
// 10.4.1.3 BoundFunctionCreate ( targetFunction, boundThis, boundArgs ), https://tc39.es/ecma262/#sec-boundfunctioncreate
|
|
ThrowCompletionOr<NonnullGCPtr<BoundFunction>> BoundFunction::create(Realm& realm, FunctionObject& target_function, Value bound_this, Vector<Value> bound_arguments)
|
|
{
|
|
// 1. Let proto be ? targetFunction.[[GetPrototypeOf]]().
|
|
auto* prototype = TRY(target_function.internal_get_prototype_of());
|
|
|
|
// 2. Let internalSlotsList be the list-concatenation of « [[Prototype]], [[Extensible]] » and the internal slots listed in Table 34.
|
|
// 3. Let obj be MakeBasicObject(internalSlotsList).
|
|
// 4. Set obj.[[Prototype]] to proto.
|
|
// 5. Set obj.[[Call]] as described in 10.4.1.1.
|
|
// 6. If IsConstructor(targetFunction) is true, then
|
|
// a. Set obj.[[Construct]] as described in 10.4.1.2.
|
|
// 7. Set obj.[[BoundTargetFunction]] to targetFunction.
|
|
// 8. Set obj.[[BoundThis]] to boundThis.
|
|
// 9. Set obj.[[BoundArguments]] to boundArgs.
|
|
auto object = realm.heap().allocate<BoundFunction>(realm, realm, target_function, bound_this, move(bound_arguments), prototype);
|
|
|
|
// 10. Return obj.
|
|
return object;
|
|
}
|
|
|
|
BoundFunction::BoundFunction(Realm& realm, FunctionObject& bound_target_function, Value bound_this, Vector<Value> bound_arguments, Object* prototype)
|
|
: FunctionObject(realm, prototype)
|
|
, m_bound_target_function(&bound_target_function)
|
|
, m_bound_this(bound_this)
|
|
, m_bound_arguments(move(bound_arguments))
|
|
// FIXME: Non-standard and redundant, remove.
|
|
, m_name(DeprecatedString::formatted("bound {}", bound_target_function.name()))
|
|
{
|
|
}
|
|
|
|
// 10.4.1.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-bound-function-exotic-objects-call-thisargument-argumentslist
|
|
ThrowCompletionOr<Value> BoundFunction::internal_call([[maybe_unused]] Value this_argument, MarkedVector<Value> arguments_list)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let target be F.[[BoundTargetFunction]].
|
|
auto& target = *m_bound_target_function;
|
|
|
|
// 2. Let boundThis be F.[[BoundThis]].
|
|
auto bound_this = m_bound_this;
|
|
|
|
// 3. Let boundArgs be F.[[BoundArguments]].
|
|
auto& bound_args = m_bound_arguments;
|
|
|
|
// 4. Let args be the list-concatenation of boundArgs and argumentsList.
|
|
auto args = MarkedVector<Value> { heap() };
|
|
args.extend(bound_args);
|
|
args.extend(move(arguments_list));
|
|
|
|
// 5. Return ? Call(target, boundThis, args).
|
|
return call(vm, &target, bound_this, move(args));
|
|
}
|
|
|
|
// 10.4.1.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-bound-function-exotic-objects-construct-argumentslist-newtarget
|
|
ThrowCompletionOr<NonnullGCPtr<Object>> BoundFunction::internal_construct(MarkedVector<Value> arguments_list, FunctionObject& new_target)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let target be F.[[BoundTargetFunction]].
|
|
auto& target = *m_bound_target_function;
|
|
|
|
// 2. Assert: IsConstructor(target) is true.
|
|
VERIFY(Value(&target).is_constructor());
|
|
|
|
// 3. Let boundArgs be F.[[BoundArguments]].
|
|
auto& bound_args = m_bound_arguments;
|
|
|
|
// 4. Let args be the list-concatenation of boundArgs and argumentsList.
|
|
auto args = MarkedVector<Value> { heap() };
|
|
args.extend(bound_args);
|
|
args.extend(move(arguments_list));
|
|
|
|
// 5. If SameValue(F, newTarget) is true, set newTarget to target.
|
|
auto* final_new_target = &new_target;
|
|
if (this == &new_target)
|
|
final_new_target = ⌖
|
|
|
|
// 6. Return ? Construct(target, args, newTarget).
|
|
return construct(vm, target, move(args), final_new_target);
|
|
}
|
|
|
|
void BoundFunction::visit_edges(Visitor& visitor)
|
|
{
|
|
Base::visit_edges(visitor);
|
|
|
|
visitor.visit(m_bound_target_function);
|
|
visitor.visit(m_bound_this);
|
|
for (auto argument : m_bound_arguments)
|
|
visitor.visit(argument);
|
|
}
|
|
|
|
}
|