
Adds initial CanvasPath arcTo support for 2D rendering contexts https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
207 lines
9 KiB
C++
207 lines
9 KiB
C++
/*
|
|
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ExtraMathConstants.h>
|
|
#include <LibWeb/HTML/Canvas/CanvasPath.h>
|
|
|
|
namespace Web::HTML {
|
|
|
|
Gfx::AffineTransform CanvasPath::active_transform() const
|
|
{
|
|
if (m_canvas_state.has_value())
|
|
return m_canvas_state->drawing_state().transform;
|
|
return {};
|
|
}
|
|
|
|
void CanvasPath::close_path()
|
|
{
|
|
m_path.close();
|
|
}
|
|
|
|
void CanvasPath::move_to(float x, float y)
|
|
{
|
|
m_path.move_to(active_transform().map(Gfx::FloatPoint { x, y }));
|
|
}
|
|
|
|
void CanvasPath::line_to(float x, float y)
|
|
{
|
|
m_path.line_to(active_transform().map(Gfx::FloatPoint { x, y }));
|
|
}
|
|
|
|
void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y)
|
|
{
|
|
auto transform = active_transform();
|
|
m_path.quadratic_bezier_curve_to(transform.map(Gfx::FloatPoint { cx, cy }), transform.map(Gfx::FloatPoint { x, y }));
|
|
}
|
|
|
|
void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y)
|
|
{
|
|
auto transform = active_transform();
|
|
m_path.cubic_bezier_curve_to(
|
|
transform.map(Gfx::FloatPoint { cp1x, cp1y }), transform.map(Gfx::FloatPoint { cp2x, cp2y }), transform.map(Gfx::FloatPoint { x, y }));
|
|
}
|
|
|
|
WebIDL::ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise)
|
|
{
|
|
if (radius < 0)
|
|
return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
|
|
return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise);
|
|
}
|
|
|
|
WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise)
|
|
{
|
|
if (radius_x < 0)
|
|
return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The major-axis radius provided ({}) is negative.", radius_x)));
|
|
|
|
if (radius_y < 0)
|
|
return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The minor-axis radius provided ({}) is negative.", radius_y)));
|
|
|
|
if (constexpr float tau = M_TAU; (!counter_clockwise && (end_angle - start_angle) >= tau)
|
|
|| (counter_clockwise && (start_angle - end_angle) >= tau)) {
|
|
start_angle = 0;
|
|
// FIXME: elliptical_arc_to() incorrectly handles the case where the start/end points are very close.
|
|
// So we slightly fudge the numbers here to correct for that.
|
|
end_angle = tau * 0.9999f;
|
|
} else {
|
|
start_angle = fmodf(start_angle, tau);
|
|
end_angle = fmodf(end_angle, tau);
|
|
}
|
|
|
|
// Then, figure out where the ends of the arc are.
|
|
// To do so, we can pretend that the center of this ellipse is at (0, 0),
|
|
// and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`.
|
|
// The sign of the resulting relative positions is just whether our angle is on one of the left quadrants.
|
|
float sin_rotation;
|
|
float cos_rotation;
|
|
AK::sincos(rotation, sin_rotation, cos_rotation);
|
|
|
|
auto resolve_point_with_angle = [&](float angle) {
|
|
auto tan_relative = tanf(angle);
|
|
auto tan2 = tan_relative * tan_relative;
|
|
|
|
auto ab = radius_x * radius_y;
|
|
auto a2 = radius_x * radius_x;
|
|
auto b2 = radius_y * radius_y;
|
|
auto sqrt = sqrtf(b2 + a2 * tan2);
|
|
|
|
auto relative_x_position = ab / sqrt;
|
|
auto relative_y_position = ab * tan_relative / sqrt;
|
|
|
|
// Make sure to set the correct sign
|
|
// -1 if 0 ≤ θ < 90° or 270°< θ ≤ 360°
|
|
// 1 if 90° < θ< 270°
|
|
float sn = cosf(angle) >= 0 ? 1 : -1;
|
|
relative_x_position *= sn;
|
|
relative_y_position *= sn;
|
|
|
|
// Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin.
|
|
auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation;
|
|
auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation;
|
|
return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y };
|
|
};
|
|
|
|
auto start_point = resolve_point_with_angle(start_angle);
|
|
auto end_point = resolve_point_with_angle(end_angle);
|
|
|
|
auto delta_theta = end_angle - start_angle;
|
|
|
|
auto transform = active_transform();
|
|
m_path.move_to(transform.map(start_point));
|
|
m_path.elliptical_arc_to(
|
|
transform.map(Gfx::FloatPoint { end_point }),
|
|
transform.map(Gfx::FloatSize { radius_x, radius_y }),
|
|
rotation + transform.rotation(),
|
|
delta_theta > AK::Pi<float>, !counter_clockwise);
|
|
|
|
return {};
|
|
}
|
|
|
|
// https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
|
|
WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
|
|
{
|
|
// 1. If any of the arguments are infinite or NaN, then return.
|
|
if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
|
|
return {};
|
|
|
|
// 2. Ensure there is a subpath for (x1, y1).
|
|
auto transform = active_transform();
|
|
m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 }));
|
|
|
|
// 3. If radius is negative, then throw an "IndexSizeError" DOMException.
|
|
if (radius < 0)
|
|
return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
|
|
|
|
// 4. Let the point (x0, y0) be the last point in the subpath,
|
|
// transformed by the inverse of the current transformation matrix
|
|
// (so that it is in the same coordinate system as the points passed to the method).
|
|
// Point (x0, y0)
|
|
auto p0 = m_path.last_point();
|
|
// Point (x1, y1)
|
|
auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
|
|
// Point (x2, y2)
|
|
auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
|
|
|
|
// 5. If the point (x0, y0) is equal to the point (x1, y1),
|
|
// or if the point (x1, y1) is equal to the point (x2, y2),
|
|
// or if radius is zero, then add the point (x1, y1) to the subpath,
|
|
// and connect that point to the previous point (x0, y0) by a straight line.
|
|
if (p0 == p1 || p1 == p2 || radius == 0) {
|
|
m_path.line_to(p1);
|
|
return {};
|
|
}
|
|
|
|
auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
|
|
auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
|
|
auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
|
|
// 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
|
|
// then add the point (x1, y1) to the subpath,
|
|
// and connect that point to the previous point (x0, y0) by a straight line.
|
|
if (-1 == cos_theta || 1 == cos_theta) {
|
|
m_path.line_to(p1);
|
|
return {};
|
|
}
|
|
|
|
// 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
|
|
// and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
|
|
// and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
|
|
// The points at which this circle touches these two lines are called the start and end tangent points respectively.
|
|
auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
|
|
auto factor1 = adjacent / static_cast<double>(v1.length());
|
|
auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
|
|
auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
|
|
auto start_tangent = Gfx::FloatPoint { x3, y3 };
|
|
|
|
auto factor2 = adjacent / static_cast<double>(v2.length());
|
|
auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
|
|
auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
|
|
auto end_tangent = Gfx::FloatPoint { x4, y4 };
|
|
|
|
// Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
|
|
m_path.line_to(start_tangent);
|
|
|
|
bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
|
|
auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
|
|
bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
|
|
|
|
// and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
|
|
m_path.arc_to(end_tangent, radius, large_arc, sweep);
|
|
return {};
|
|
}
|
|
|
|
void CanvasPath::rect(float x, float y, float width, float height)
|
|
{
|
|
auto transform = active_transform();
|
|
m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
|
|
if (width == 0 || height == 0)
|
|
return;
|
|
m_path.line_to(transform.map(Gfx::FloatPoint { x + width, y }));
|
|
m_path.line_to(transform.map(Gfx::FloatPoint { x + width, y + height }));
|
|
m_path.line_to(transform.map(Gfx::FloatPoint { x, y + height }));
|
|
m_path.close();
|
|
}
|
|
|
|
}
|