
We were marking the execing thread as Runnable near the end of Process::do_exec(). This was necessary for exec in processes that had never been scheduled yet, which is a specific edge case that only applies to the very first userspace process (normally SystemServer). At this point, such threads are in the Invalid state. In the common case (normal userspace-initiated exec), making the current thread Runnable meant that we switched away from its current state: Running. As the thread is indeed running, that's a bogus change! This created a short time window in which the thread state was bogus, and any attempt to block the thread would panic the kernel (due to a bogus thread state in Thread::block() leading to VERIFY_NOT_REACHED().) Fix this by not touching the thread state in Process::do_exec() and instead make the first userspace thread Runnable directly after calling Process::exec() on it in try_create_userspace_process(). It's unfortunate that exec() can be called both on the current thread, and on a new thread that has never been scheduled. It would be good to not have the latter edge case, but fixing that will require larger architectural changes outside the scope of this fix.
889 lines
29 KiB
C++
889 lines
29 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Singleton.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Time.h>
|
|
#include <AK/Types.h>
|
|
#include <Kernel/API/Syscall.h>
|
|
#include <Kernel/Arch/x86/InterruptDisabler.h>
|
|
#include <Kernel/Coredump.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Devices/DeviceManagement.h>
|
|
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
|
|
# include <Kernel/Devices/KCOVDevice.h>
|
|
#endif
|
|
#include <Kernel/API/POSIX/errno.h>
|
|
#include <Kernel/Devices/NullDevice.h>
|
|
#include <Kernel/FileSystem/Custody.h>
|
|
#include <Kernel/FileSystem/OpenFileDescription.h>
|
|
#include <Kernel/FileSystem/VirtualFileSystem.h>
|
|
#include <Kernel/KBufferBuilder.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Memory/AnonymousVMObject.h>
|
|
#include <Kernel/Memory/PageDirectory.h>
|
|
#include <Kernel/Memory/SharedInodeVMObject.h>
|
|
#include <Kernel/PerformanceEventBuffer.h>
|
|
#include <Kernel/PerformanceManager.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/StdLib.h>
|
|
#include <Kernel/TTY/TTY.h>
|
|
#include <Kernel/Thread.h>
|
|
#include <Kernel/ThreadTracer.h>
|
|
#include <LibC/limits.h>
|
|
|
|
namespace Kernel {
|
|
|
|
static void create_signal_trampoline();
|
|
|
|
RecursiveSpinlock g_profiling_lock;
|
|
static Atomic<pid_t> next_pid;
|
|
static Singleton<SpinlockProtected<Process::List>> s_all_instances;
|
|
READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
|
|
|
|
static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
|
|
|
|
MutexProtected<OwnPtr<KString>>& hostname()
|
|
{
|
|
return *s_hostname;
|
|
}
|
|
|
|
SpinlockProtected<Process::List>& Process::all_instances()
|
|
{
|
|
return *s_all_instances;
|
|
}
|
|
|
|
ProcessID Process::allocate_pid()
|
|
{
|
|
// Overflow is UB, and negative PIDs wreck havoc.
|
|
// TODO: Handle PID overflow
|
|
// For example: Use an Atomic<u32>, mask the most significant bit,
|
|
// retry if PID is already taken as a PID, taken as a TID,
|
|
// takes as a PGID, taken as a SID, or zero.
|
|
return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void Process::initialize()
|
|
{
|
|
next_pid.store(0, AK::MemoryOrder::memory_order_release);
|
|
|
|
// Note: This is called before scheduling is initialized, and before APs are booted.
|
|
// So we can "safely" bypass the lock here.
|
|
reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
|
|
|
|
create_signal_trampoline();
|
|
}
|
|
|
|
bool Process::in_group(GroupID gid) const
|
|
{
|
|
return this->gid() == gid || extra_gids().contains_slow(gid);
|
|
}
|
|
|
|
void Process::kill_threads_except_self()
|
|
{
|
|
InterruptDisabler disabler;
|
|
|
|
if (thread_count() <= 1)
|
|
return;
|
|
|
|
auto* current_thread = Thread::current();
|
|
for_each_thread([&](Thread& thread) {
|
|
if (&thread == current_thread)
|
|
return;
|
|
|
|
if (auto state = thread.state(); state == Thread::State::Dead
|
|
|| state == Thread::State::Dying)
|
|
return;
|
|
|
|
// We need to detach this thread in case it hasn't been joined
|
|
thread.detach();
|
|
thread.set_should_die();
|
|
});
|
|
|
|
u32 dropped_lock_count = 0;
|
|
if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
|
|
dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
|
|
}
|
|
|
|
void Process::kill_all_threads()
|
|
{
|
|
for_each_thread([&](Thread& thread) {
|
|
// We need to detach this thread in case it hasn't been joined
|
|
thread.detach();
|
|
thread.set_should_die();
|
|
});
|
|
}
|
|
|
|
void Process::register_new(Process& process)
|
|
{
|
|
// Note: this is essentially the same like process->ref()
|
|
RefPtr<Process> new_process = process;
|
|
all_instances().with([&](auto& list) {
|
|
list.prepend(process);
|
|
});
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
|
|
{
|
|
auto parts = path.split_view('/');
|
|
if (arguments.is_empty()) {
|
|
auto last_part = TRY(KString::try_create(parts.last()));
|
|
TRY(arguments.try_append(move(last_part)));
|
|
}
|
|
|
|
auto path_string = TRY(KString::try_create(path));
|
|
auto name = TRY(KString::try_create(parts.last()));
|
|
auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
|
|
|
|
TRY(process->m_fds.try_resize(Process::OpenFileDescriptions::max_open()));
|
|
|
|
auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
|
|
auto description = TRY(device_to_use_as_tty.open(O_RDWR));
|
|
auto setup_description = [&process, &description](int fd) {
|
|
process->m_fds.m_fds_metadatas[fd].allocate();
|
|
process->m_fds[fd].set(*description);
|
|
};
|
|
setup_description(0);
|
|
setup_description(1);
|
|
setup_description(2);
|
|
|
|
Thread* new_main_thread = nullptr;
|
|
u32 prev_flags = 0;
|
|
if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
|
|
dbgln("Failed to exec {}: {}", path, result.error());
|
|
first_thread = nullptr;
|
|
return result.release_error();
|
|
}
|
|
|
|
register_new(*process);
|
|
|
|
// NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
|
|
process->ref();
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
new_main_thread->set_state(Thread::State::Runnable);
|
|
}
|
|
|
|
return process;
|
|
}
|
|
|
|
RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
|
|
{
|
|
auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
|
|
if (process_or_error.is_error())
|
|
return {};
|
|
auto process = process_or_error.release_value();
|
|
|
|
first_thread->regs().set_ip((FlatPtr)entry);
|
|
#if ARCH(I386)
|
|
first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
|
|
#else
|
|
first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
|
|
#endif
|
|
|
|
if (do_register == RegisterProcess::Yes)
|
|
register_new(*process);
|
|
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
first_thread->set_affinity(affinity);
|
|
first_thread->set_state(Thread::State::Runnable);
|
|
return process;
|
|
}
|
|
|
|
void Process::protect_data()
|
|
{
|
|
m_protected_data_refs.unref([&]() {
|
|
MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
|
|
});
|
|
}
|
|
|
|
void Process::unprotect_data()
|
|
{
|
|
m_protected_data_refs.ref([&]() {
|
|
MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
|
|
});
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
|
|
{
|
|
auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
|
|
auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
|
|
TRY(process->attach_resources(move(space), first_thread, fork_parent));
|
|
return process;
|
|
}
|
|
|
|
Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
|
|
: m_name(move(name))
|
|
, m_is_kernel_process(is_kernel_process)
|
|
, m_executable(move(executable))
|
|
, m_cwd(move(cwd))
|
|
, m_tty(tty)
|
|
, m_wait_blocker_set(*this)
|
|
{
|
|
// Ensure that we protect the process data when exiting the constructor.
|
|
ProtectedDataMutationScope scope { *this };
|
|
|
|
m_protected_values.pid = allocate_pid();
|
|
m_protected_values.ppid = ppid;
|
|
m_protected_values.uid = uid;
|
|
m_protected_values.gid = gid;
|
|
m_protected_values.euid = uid;
|
|
m_protected_values.egid = gid;
|
|
m_protected_values.suid = uid;
|
|
m_protected_values.sgid = gid;
|
|
|
|
dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
|
|
}
|
|
|
|
ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
|
|
{
|
|
m_space = move(preallocated_space);
|
|
|
|
auto create_first_thread = [&] {
|
|
if (fork_parent) {
|
|
// NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
|
|
return Thread::current()->try_clone(*this);
|
|
}
|
|
// NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
|
|
return Thread::try_create(*this);
|
|
};
|
|
|
|
first_thread = TRY(create_first_thread());
|
|
|
|
if (!fork_parent) {
|
|
// FIXME: Figure out if this is really necessary.
|
|
first_thread->detach();
|
|
}
|
|
|
|
m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
|
|
return {};
|
|
}
|
|
|
|
Process::~Process()
|
|
{
|
|
unprotect_data();
|
|
|
|
VERIFY(thread_count() == 0); // all threads should have been finalized
|
|
VERIFY(!m_alarm_timer);
|
|
|
|
PerformanceManager::add_process_exit_event(*this);
|
|
}
|
|
|
|
// Make sure the compiler doesn't "optimize away" this function:
|
|
extern void signal_trampoline_dummy() __attribute__((used));
|
|
void signal_trampoline_dummy()
|
|
{
|
|
#if ARCH(I386)
|
|
// The trampoline preserves the current eax, pushes the signal code and
|
|
// then calls the signal handler. We do this because, when interrupting a
|
|
// blocking syscall, that syscall may return some special error code in eax;
|
|
// This error code would likely be overwritten by the signal handler, so it's
|
|
// necessary to preserve it here.
|
|
asm(
|
|
".intel_syntax noprefix\n"
|
|
".globl asm_signal_trampoline\n"
|
|
"asm_signal_trampoline:\n"
|
|
"push ebp\n"
|
|
"mov ebp, esp\n"
|
|
"push eax\n" // we have to store eax 'cause it might be the return value from a syscall
|
|
"sub esp, 4\n" // align the stack to 16 bytes
|
|
"mov eax, [ebp+12]\n" // push the signal code
|
|
"push eax\n"
|
|
"call [ebp+8]\n" // call the signal handler
|
|
"add esp, 8\n"
|
|
"mov eax, %P0\n"
|
|
"int 0x82\n" // sigreturn syscall
|
|
".globl asm_signal_trampoline_end\n"
|
|
"asm_signal_trampoline_end:\n"
|
|
".att_syntax" ::"i"(Syscall::SC_sigreturn));
|
|
#elif ARCH(X86_64)
|
|
// The trampoline preserves the current rax, pushes the signal code and
|
|
// then calls the signal handler. We do this because, when interrupting a
|
|
// blocking syscall, that syscall may return some special error code in eax;
|
|
// This error code would likely be overwritten by the signal handler, so it's
|
|
// necessary to preserve it here.
|
|
asm(
|
|
".intel_syntax noprefix\n"
|
|
".globl asm_signal_trampoline\n"
|
|
"asm_signal_trampoline:\n"
|
|
"push rbp\n"
|
|
"mov rbp, rsp\n"
|
|
"push rax\n" // we have to store rax 'cause it might be the return value from a syscall
|
|
"sub rsp, 8\n" // align the stack to 16 bytes
|
|
"mov rdi, [rbp+24]\n" // push the signal code
|
|
"call [rbp+16]\n" // call the signal handler
|
|
"add rsp, 8\n"
|
|
"mov rax, %P0\n"
|
|
"int 0x82\n" // sigreturn syscall
|
|
".globl asm_signal_trampoline_end\n"
|
|
"asm_signal_trampoline_end:\n"
|
|
".att_syntax" ::"i"(Syscall::SC_sigreturn));
|
|
#endif
|
|
}
|
|
|
|
extern "C" char const asm_signal_trampoline[];
|
|
extern "C" char const asm_signal_trampoline_end[];
|
|
|
|
void create_signal_trampoline()
|
|
{
|
|
// NOTE: We leak this region.
|
|
g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
|
|
g_signal_trampoline_region->set_syscall_region(true);
|
|
|
|
size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
|
|
|
|
u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
|
|
memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
|
|
|
|
g_signal_trampoline_region->set_writable(false);
|
|
g_signal_trampoline_region->remap();
|
|
}
|
|
|
|
void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
|
|
{
|
|
VERIFY(!is_dead());
|
|
VERIFY(&Process::current() == this);
|
|
|
|
if (out_of_memory) {
|
|
dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
|
|
} else {
|
|
if (ip >= kernel_load_base && g_kernel_symbols_available) {
|
|
auto const* symbol = symbolicate_kernel_address(ip);
|
|
dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
|
|
} else {
|
|
dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
|
|
}
|
|
dump_backtrace();
|
|
}
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.termination_signal = signal;
|
|
}
|
|
set_should_generate_coredump(!out_of_memory);
|
|
address_space().dump_regions();
|
|
VERIFY(is_user_process());
|
|
die();
|
|
// We can not return from here, as there is nowhere
|
|
// to unwind to, so die right away.
|
|
Thread::current()->die_if_needed();
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
RefPtr<Process> Process::from_pid(ProcessID pid)
|
|
{
|
|
return all_instances().with([&](const auto& list) -> RefPtr<Process> {
|
|
for (auto const& process : list) {
|
|
if (process.pid() == pid)
|
|
return &process;
|
|
}
|
|
return {};
|
|
});
|
|
}
|
|
|
|
const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
if (m_fds_metadatas.size() <= i)
|
|
return nullptr;
|
|
|
|
if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
|
|
return &metadata;
|
|
|
|
return nullptr;
|
|
}
|
|
Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
if (m_fds_metadatas.size() <= i)
|
|
return nullptr;
|
|
|
|
if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
|
|
return &metadata;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
VERIFY(m_fds_metadatas[i].is_allocated());
|
|
return m_fds_metadatas[i];
|
|
}
|
|
Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
VERIFY(m_fds_metadatas[i].is_allocated());
|
|
return m_fds_metadatas[i];
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
if (fd < 0)
|
|
return EBADF;
|
|
if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
|
|
return EBADF;
|
|
RefPtr description = m_fds_metadatas[fd].description();
|
|
if (!description)
|
|
return EBADF;
|
|
return description.release_nonnull();
|
|
}
|
|
|
|
void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
for (auto const& file_description_metadata : m_fds_metadatas) {
|
|
callback(file_description_metadata);
|
|
}
|
|
}
|
|
|
|
void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
for (auto& file_description_metadata : m_fds_metadatas) {
|
|
callback(file_description_metadata);
|
|
}
|
|
}
|
|
|
|
size_t Process::OpenFileDescriptions::open_count() const
|
|
{
|
|
size_t count = 0;
|
|
enumerate([&](auto& file_description_metadata) {
|
|
if (file_description_metadata.is_valid())
|
|
++count;
|
|
});
|
|
return count;
|
|
}
|
|
|
|
ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
|
|
{
|
|
SpinlockLocker lock(m_fds_lock);
|
|
for (size_t i = first_candidate_fd; i < max_open(); ++i) {
|
|
if (!m_fds_metadatas[i].is_allocated()) {
|
|
m_fds_metadatas[i].allocate();
|
|
return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
|
|
}
|
|
}
|
|
return EMFILE;
|
|
}
|
|
|
|
Time kgettimeofday()
|
|
{
|
|
return TimeManagement::now();
|
|
}
|
|
|
|
siginfo_t Process::wait_info() const
|
|
{
|
|
siginfo_t siginfo {};
|
|
siginfo.si_signo = SIGCHLD;
|
|
siginfo.si_pid = pid().value();
|
|
siginfo.si_uid = uid().value();
|
|
|
|
if (m_protected_values.termination_signal != 0) {
|
|
siginfo.si_status = m_protected_values.termination_signal;
|
|
siginfo.si_code = CLD_KILLED;
|
|
} else {
|
|
siginfo.si_status = m_protected_values.termination_status;
|
|
siginfo.si_code = CLD_EXITED;
|
|
}
|
|
return siginfo;
|
|
}
|
|
|
|
Custody& Process::current_directory()
|
|
{
|
|
if (!m_cwd)
|
|
m_cwd = VirtualFileSystem::the().root_custody();
|
|
return *m_cwd;
|
|
}
|
|
|
|
ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
|
|
{
|
|
if (path_length == 0)
|
|
return EINVAL;
|
|
if (path_length > PATH_MAX)
|
|
return ENAMETOOLONG;
|
|
return try_copy_kstring_from_user(user_path, path_length);
|
|
}
|
|
|
|
ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
|
|
{
|
|
Userspace<char const*> path_characters((FlatPtr)path.characters);
|
|
return get_syscall_path_argument(path_characters, path.length);
|
|
}
|
|
|
|
ErrorOr<void> Process::dump_core()
|
|
{
|
|
VERIFY(is_dumpable());
|
|
VERIFY(should_generate_coredump());
|
|
dbgln("Generating coredump for pid: {}", pid().value());
|
|
auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
|
|
auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
|
|
return coredump->write();
|
|
}
|
|
|
|
ErrorOr<void> Process::dump_perfcore()
|
|
{
|
|
VERIFY(is_dumpable());
|
|
VERIFY(m_perf_event_buffer);
|
|
dbgln("Generating perfcore for pid: {}", pid().value());
|
|
|
|
// Try to generate a filename which isn't already used.
|
|
auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
|
|
auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
|
|
RefPtr<OpenFileDescription> description;
|
|
for (size_t attempt = 1; attempt <= 10; ++attempt) {
|
|
auto description_or_error = VirtualFileSystem::the().open(perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
|
|
if (!description_or_error.is_error()) {
|
|
description = description_or_error.release_value();
|
|
break;
|
|
}
|
|
perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
|
|
}
|
|
if (!description) {
|
|
dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
|
|
return EEXIST;
|
|
}
|
|
|
|
auto builder = TRY(KBufferBuilder::try_create());
|
|
TRY(m_perf_event_buffer->to_json(builder));
|
|
|
|
auto json = builder.build();
|
|
if (!json) {
|
|
dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
|
|
return ENOMEM;
|
|
}
|
|
auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
|
|
TRY(description->write(json_buffer, json->size()));
|
|
|
|
dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
|
|
return {};
|
|
}
|
|
|
|
void Process::finalize()
|
|
{
|
|
VERIFY(Thread::current() == g_finalizer);
|
|
|
|
dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
|
|
|
|
if (veil_state() == VeilState::Dropped)
|
|
dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
|
|
|
|
if (is_dumpable()) {
|
|
if (m_should_generate_coredump) {
|
|
auto result = dump_core();
|
|
if (result.is_error()) {
|
|
critical_dmesgln("Failed to write coredump: {}", result.error());
|
|
}
|
|
}
|
|
if (m_perf_event_buffer) {
|
|
auto result = dump_perfcore();
|
|
if (result.is_error())
|
|
critical_dmesgln("Failed to write perfcore: {}", result.error());
|
|
TimeManagement::the().disable_profile_timer();
|
|
}
|
|
}
|
|
|
|
m_threads_for_coredump.clear();
|
|
|
|
if (m_alarm_timer)
|
|
TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
|
|
m_fds.clear();
|
|
m_tty = nullptr;
|
|
m_executable = nullptr;
|
|
m_cwd = nullptr;
|
|
m_arguments.clear();
|
|
m_environment.clear();
|
|
|
|
m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
|
|
|
|
{
|
|
// FIXME: PID/TID BUG
|
|
if (auto parent_thread = Thread::from_tid(ppid().value())) {
|
|
if ((parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
|
|
parent_thread->send_signal(SIGCHLD, this);
|
|
}
|
|
}
|
|
|
|
if (!!ppid()) {
|
|
if (auto parent = Process::from_pid(ppid())) {
|
|
parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
|
|
parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
|
|
}
|
|
}
|
|
|
|
unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
|
|
|
|
m_space->remove_all_regions({});
|
|
|
|
VERIFY(ref_count() > 0);
|
|
// WaitBlockerSet::finalize will be in charge of dropping the last
|
|
// reference if there are still waiters around, or whenever the last
|
|
// waitable states are consumed. Unless there is no parent around
|
|
// anymore, in which case we'll just drop it right away.
|
|
m_wait_blocker_set.finalize();
|
|
}
|
|
|
|
void Process::disowned_by_waiter(Process& process)
|
|
{
|
|
m_wait_blocker_set.disowned_by_waiter(process);
|
|
}
|
|
|
|
void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
|
|
{
|
|
RefPtr<Process> waiter_process;
|
|
if (auto* my_tracer = tracer())
|
|
waiter_process = Process::from_pid(my_tracer->tracer_pid());
|
|
else
|
|
waiter_process = Process::from_pid(ppid());
|
|
|
|
if (waiter_process)
|
|
waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
|
|
}
|
|
|
|
void Process::die()
|
|
{
|
|
auto expected = State::Running;
|
|
if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
|
|
// It's possible that another thread calls this at almost the same time
|
|
// as we can't always instantly kill other threads (they may be blocked)
|
|
// So if we already were called then other threads should stop running
|
|
// momentarily and we only really need to service the first thread
|
|
return;
|
|
}
|
|
|
|
// Let go of the TTY, otherwise a slave PTY may keep the master PTY from
|
|
// getting an EOF when the last process using the slave PTY dies.
|
|
// If the master PTY owner relies on an EOF to know when to wait() on a
|
|
// slave owner, we have to allow the PTY pair to be torn down.
|
|
m_tty = nullptr;
|
|
|
|
VERIFY(m_threads_for_coredump.is_empty());
|
|
for_each_thread([&](auto& thread) {
|
|
auto result = m_threads_for_coredump.try_append(thread);
|
|
if (result.is_error())
|
|
dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
|
|
});
|
|
|
|
all_instances().with([&](const auto& list) {
|
|
for (auto it = list.begin(); it != list.end();) {
|
|
auto& process = *it;
|
|
++it;
|
|
if (process.has_tracee_thread(pid())) {
|
|
dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
|
|
process.stop_tracing();
|
|
auto err = process.send_signal(SIGSTOP, this);
|
|
if (err.is_error())
|
|
dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
|
|
}
|
|
}
|
|
});
|
|
|
|
kill_all_threads();
|
|
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
|
|
KCOVDevice::free_process();
|
|
#endif
|
|
}
|
|
|
|
void Process::terminate_due_to_signal(u8 signal)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(signal < 32);
|
|
VERIFY(&Process::current() == this);
|
|
dbgln("Terminating {} due to signal {}", *this, signal);
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.termination_status = 0;
|
|
m_protected_values.termination_signal = signal;
|
|
}
|
|
die();
|
|
}
|
|
|
|
ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
|
|
{
|
|
// Try to send it to the "obvious" main thread:
|
|
auto receiver_thread = Thread::from_tid(pid().value());
|
|
// If the main thread has died, there may still be other threads:
|
|
if (!receiver_thread) {
|
|
// The first one should be good enough.
|
|
// Neither kill(2) nor kill(3) specify any selection procedure.
|
|
for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
|
|
receiver_thread = &thread;
|
|
return IterationDecision::Break;
|
|
});
|
|
}
|
|
if (receiver_thread) {
|
|
receiver_thread->send_signal(signal, sender);
|
|
return {};
|
|
}
|
|
return ESRCH;
|
|
}
|
|
|
|
RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
|
|
{
|
|
VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
|
|
|
|
// FIXME: Do something with guard pages?
|
|
|
|
auto thread_or_error = Thread::try_create(*this);
|
|
if (thread_or_error.is_error())
|
|
return {};
|
|
|
|
auto thread = thread_or_error.release_value();
|
|
thread->set_name(move(name));
|
|
thread->set_affinity(affinity);
|
|
thread->set_priority(priority);
|
|
if (!joinable)
|
|
thread->detach();
|
|
|
|
auto& regs = thread->regs();
|
|
regs.set_ip((FlatPtr)entry);
|
|
regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
|
|
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
thread->set_state(Thread::State::Runnable);
|
|
return thread;
|
|
}
|
|
|
|
void Process::OpenFileDescriptionAndFlags::clear()
|
|
{
|
|
// FIXME: Verify Process::m_fds_lock is locked!
|
|
m_description = nullptr;
|
|
m_flags = 0;
|
|
}
|
|
|
|
void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
|
|
{
|
|
// FIXME: Verify Process::m_fds_lock is locked!
|
|
m_description = move(description);
|
|
m_flags = flags;
|
|
}
|
|
|
|
void Process::set_tty(TTY* tty)
|
|
{
|
|
m_tty = tty;
|
|
}
|
|
|
|
ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
|
|
{
|
|
m_tracer = TRY(ThreadTracer::try_create(tracer));
|
|
return {};
|
|
}
|
|
|
|
void Process::stop_tracing()
|
|
{
|
|
m_tracer = nullptr;
|
|
}
|
|
|
|
void Process::tracer_trap(Thread& thread, const RegisterState& regs)
|
|
{
|
|
VERIFY(m_tracer.ptr());
|
|
m_tracer->set_regs(regs);
|
|
thread.send_urgent_signal_to_self(SIGTRAP);
|
|
}
|
|
|
|
bool Process::create_perf_events_buffer_if_needed()
|
|
{
|
|
if (m_perf_event_buffer)
|
|
return true;
|
|
m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
|
|
if (!m_perf_event_buffer)
|
|
return false;
|
|
return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
|
|
}
|
|
|
|
void Process::delete_perf_events_buffer()
|
|
{
|
|
if (m_perf_event_buffer)
|
|
m_perf_event_buffer = nullptr;
|
|
}
|
|
|
|
bool Process::remove_thread(Thread& thread)
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
VERIFY(thread_cnt_before != 0);
|
|
thread_list().with([&](auto& thread_list) {
|
|
thread_list.remove(thread);
|
|
});
|
|
return thread_cnt_before == 1;
|
|
}
|
|
|
|
bool Process::add_thread(Thread& thread)
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
|
|
thread_list().with([&](auto& thread_list) {
|
|
thread_list.append(thread);
|
|
});
|
|
return is_first;
|
|
}
|
|
|
|
void Process::set_dumpable(bool dumpable)
|
|
{
|
|
if (dumpable == m_protected_values.dumpable)
|
|
return;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.dumpable = dumpable;
|
|
}
|
|
|
|
ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
|
|
{
|
|
// Write it into the first available property slot.
|
|
for (auto& slot : m_coredump_properties) {
|
|
if (slot.key)
|
|
continue;
|
|
slot.key = move(key);
|
|
slot.value = move(value);
|
|
return {};
|
|
}
|
|
return ENOBUFS;
|
|
}
|
|
|
|
ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
|
|
{
|
|
auto key_kstring = TRY(KString::try_create(key));
|
|
auto value_kstring = TRY(KString::try_create(value));
|
|
return set_coredump_property(move(key_kstring), move(value_kstring));
|
|
};
|
|
|
|
static constexpr StringView to_string(Pledge promise)
|
|
{
|
|
#define __ENUMERATE_PLEDGE_PROMISE(x) \
|
|
case Pledge::x: \
|
|
return #x;
|
|
switch (promise) {
|
|
ENUMERATE_PLEDGE_PROMISES
|
|
}
|
|
#undef __ENUMERATE_PLEDGE_PROMISE
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
ErrorOr<void> Process::require_no_promises() const
|
|
{
|
|
if (!has_promises())
|
|
return {};
|
|
dbgln("Has made a promise");
|
|
Thread::current()->set_promise_violation_pending(true);
|
|
return EPROMISEVIOLATION;
|
|
}
|
|
|
|
ErrorOr<void> Process::require_promise(Pledge promise)
|
|
{
|
|
if (!has_promises())
|
|
return {};
|
|
|
|
if (has_promised(promise))
|
|
return {};
|
|
|
|
dbgln("Has not pledged {}", to_string(promise));
|
|
Thread::current()->set_promise_violation_pending(true);
|
|
(void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
|
|
return EPROMISEVIOLATION;
|
|
}
|
|
|
|
}
|