ladybird/Userland/Libraries/LibJS/Runtime/Intl/NumberFormat.cpp
2021-11-24 14:17:15 +00:00

1674 lines
75 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2021, Tim Flynn <trflynn89@pm.me>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/Utf8View.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/NumberFormat.h>
#include <LibJS/Runtime/Intl/NumberFormatFunction.h>
#include <LibUnicode/CurrencyCode.h>
#include <math.h>
#include <stdlib.h>
namespace JS::Intl {
Vector<StringView> const& NumberFormat::relevant_extension_keys()
{
// 15.3.3 Internal slots, https://tc39.es/ecma402/#sec-intl.numberformat-internal-slots
// The value of the [[RelevantExtensionKeys]] internal slot is « "nu" ».
static Vector<StringView> relevant_extension_keys { "nu"sv };
return relevant_extension_keys;
}
// 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects
NumberFormat::NumberFormat(Object& prototype)
: Object(prototype)
{
}
void NumberFormat::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
if (m_bound_format)
visitor.visit(m_bound_format);
}
void NumberFormat::set_style(StringView style)
{
if (style == "decimal"sv)
m_style = Style::Decimal;
else if (style == "percent"sv)
m_style = Style::Percent;
else if (style == "currency"sv)
m_style = Style::Currency;
else if (style == "unit"sv)
m_style = Style::Unit;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::style_string() const
{
switch (m_style) {
case Style::Decimal:
return "decimal"sv;
case Style::Percent:
return "percent"sv;
case Style::Currency:
return "currency"sv;
case Style::Unit:
return "unit"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_display(StringView currency_display)
{
m_resolved_currency_display.clear();
if (currency_display == "code"sv)
m_currency_display = CurrencyDisplay::Code;
else if (currency_display == "symbol"sv)
m_currency_display = CurrencyDisplay::Symbol;
else if (currency_display == "narrowSymbol"sv)
m_currency_display = CurrencyDisplay::NarrowSymbol;
else if (currency_display == "name"sv)
m_currency_display = CurrencyDisplay::Name;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::resolve_currency_display()
{
if (m_resolved_currency_display.has_value())
return *m_resolved_currency_display;
switch (currency_display()) {
case NumberFormat::CurrencyDisplay::Code:
m_resolved_currency_display = currency();
break;
case NumberFormat::CurrencyDisplay::Symbol:
m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Short);
break;
case NumberFormat::CurrencyDisplay::NarrowSymbol:
m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Narrow);
break;
case NumberFormat::CurrencyDisplay::Name:
m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Numeric);
break;
default:
VERIFY_NOT_REACHED();
}
if (!m_resolved_currency_display.has_value())
m_resolved_currency_display = currency();
return *m_resolved_currency_display;
}
StringView NumberFormat::currency_display_string() const
{
VERIFY(m_currency_display.has_value());
switch (*m_currency_display) {
case CurrencyDisplay::Code:
return "code"sv;
case CurrencyDisplay::Symbol:
return "symbol"sv;
case CurrencyDisplay::NarrowSymbol:
return "narrowSymbol"sv;
case CurrencyDisplay::Name:
return "name"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_sign(StringView currency_sign)
{
if (currency_sign == "standard"sv)
m_currency_sign = CurrencySign::Standard;
else if (currency_sign == "accounting"sv)
m_currency_sign = CurrencySign::Accounting;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::currency_sign_string() const
{
VERIFY(m_currency_sign.has_value());
switch (*m_currency_sign) {
case CurrencySign::Standard:
return "standard"sv;
case CurrencySign::Accounting:
return "accounting"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_unit_display(StringView unit_display)
{
if (unit_display == "short"sv)
m_unit_display = UnitDisplay::Short;
else if (unit_display == "narrow"sv)
m_unit_display = UnitDisplay::Narrow;
else if (unit_display == "long"sv)
m_unit_display = UnitDisplay::Long;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::unit_display_string() const
{
VERIFY(m_unit_display.has_value());
switch (*m_unit_display) {
case UnitDisplay::Short:
return "short"sv;
case UnitDisplay::Narrow:
return "narrow"sv;
case UnitDisplay::Long:
return "long"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormat::rounding_type_string() const
{
switch (m_rounding_type) {
case RoundingType::SignificantDigits:
return "significantDigits"sv;
case RoundingType::FractionDigits:
return "fractionDigits"sv;
case RoundingType::CompactRounding:
return "compactRounding"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_notation(StringView notation)
{
if (notation == "standard"sv)
m_notation = Notation::Standard;
else if (notation == "scientific"sv)
m_notation = Notation::Scientific;
else if (notation == "engineering"sv)
m_notation = Notation::Engineering;
else if (notation == "compact"sv)
m_notation = Notation::Compact;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::notation_string() const
{
switch (m_notation) {
case Notation::Standard:
return "standard"sv;
case Notation::Scientific:
return "scientific"sv;
case Notation::Engineering:
return "engineering"sv;
case Notation::Compact:
return "compact"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_compact_display(StringView compact_display)
{
if (compact_display == "short"sv)
m_compact_display = CompactDisplay::Short;
else if (compact_display == "long"sv)
m_compact_display = CompactDisplay::Long;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::compact_display_string() const
{
VERIFY(m_compact_display.has_value());
switch (*m_compact_display) {
case CompactDisplay::Short:
return "short"sv;
case CompactDisplay::Long:
return "long"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_sign_display(StringView sign_display)
{
if (sign_display == "auto"sv)
m_sign_display = SignDisplay::Auto;
else if (sign_display == "never"sv)
m_sign_display = SignDisplay::Never;
else if (sign_display == "always"sv)
m_sign_display = SignDisplay::Always;
else if (sign_display == "exceptZero"sv)
m_sign_display = SignDisplay::ExceptZero;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::sign_display_string() const
{
switch (m_sign_display) {
case SignDisplay::Auto:
return "auto"sv;
case SignDisplay::Never:
return "never"sv;
case SignDisplay::Always:
return "always"sv;
case SignDisplay::ExceptZero:
return "exceptZero"sv;
default:
VERIFY_NOT_REACHED();
}
}
static ALWAYS_INLINE int log10floor(double value)
{
return static_cast<int>(floor(log10(value)));
}
// 15.1.1 SetNumberFormatDigitOptions ( intlObj, options, mnfdDefault, mxfdDefault, notation ), https://tc39.es/ecma402/#sec-setnfdigitoptions
ThrowCompletionOr<void> set_number_format_digit_options(GlobalObject& global_object, NumberFormat& intl_object, Object const& options, int default_min_fraction_digits, int default_max_fraction_digits, NumberFormat::Notation notation)
{
auto& vm = global_object.vm();
// 1. Let mnid be ? GetNumberOption(options, "minimumIntegerDigits,", 1, 21, 1).
auto min_integer_digits = TRY(get_number_option(global_object, options, vm.names.minimumIntegerDigits, 1, 21, 1));
// 2. Let mnfd be ? Get(options, "minimumFractionDigits").
auto min_fraction_digits = TRY(options.get(vm.names.minimumFractionDigits));
// 3. Let mxfd be ? Get(options, "maximumFractionDigits").
auto max_fraction_digits = TRY(options.get(vm.names.maximumFractionDigits));
// 4. Let mnsd be ? Get(options, "minimumSignificantDigits").
auto min_significant_digits = TRY(options.get(vm.names.minimumSignificantDigits));
// 5. Let mxsd be ? Get(options, "maximumSignificantDigits").
auto max_significant_digits = TRY(options.get(vm.names.maximumSignificantDigits));
// 6. Set intlObj.[[MinimumIntegerDigits]] to mnid.
intl_object.set_min_integer_digits(*min_integer_digits);
// 7. If mnsd is not undefined or mxsd is not undefined, then
// a. Let hasSd be true.
// 8. Else,
// a. Let hasSd be false.
bool has_significant_digits = !min_significant_digits.is_undefined() || !max_significant_digits.is_undefined();
// 9. If mnfd is not undefined or mxfd is not undefined, then
// a. Let hasFd be true.
// 10. Else,
// a. Let hasFd be false.
bool has_fraction_digits = !min_fraction_digits.is_undefined() || !max_fraction_digits.is_undefined();
// 11. Let needSd be hasSd.
bool need_significant_digits = has_significant_digits;
// 12. If hasSd is true, or hasFd is false and notation is "compact", then
// a. Let needFd be false.
// 13. Else,
// a. Let needFd be true.
bool need_fraction_digits = !has_significant_digits && (has_fraction_digits || (notation != NumberFormat::Notation::Compact));
// 14. If needSd is true, then
if (need_significant_digits) {
// a. Assert: hasSd is true.
VERIFY(has_significant_digits);
// b. Set mnsd to ? DefaultNumberOption(mnsd, 1, 21, 1).
auto min_digits = TRY(default_number_option(global_object, min_significant_digits, 1, 21, 1));
// c. Set mxsd to ? DefaultNumberOption(mxsd, mnsd, 21, 21).
auto max_digits = TRY(default_number_option(global_object, max_significant_digits, *min_digits, 21, 21));
// d. Set intlObj.[[MinimumSignificantDigits]] to mnsd.
intl_object.set_min_significant_digits(*min_digits);
// e. Set intlObj.[[MaximumSignificantDigits]] to mxsd.
intl_object.set_max_significant_digits(*max_digits);
}
// 15. If needFd is true, then
if (need_fraction_digits) {
// a. If hasFd is true, then
if (has_fraction_digits) {
// i. Set mnfd to ? DefaultNumberOption(mnfd, 0, 20, undefined).
auto min_digits = TRY(default_number_option(global_object, min_fraction_digits, 0, 20, {}));
// ii. Set mxfd to ? DefaultNumberOption(mxfd, 0, 20, undefined).
auto max_digits = TRY(default_number_option(global_object, max_fraction_digits, 0, 20, {}));
// iii. If mnfd is undefined, set mnfd to min(mnfdDefault, mxfd).
if (!min_digits.has_value())
min_digits = min(default_min_fraction_digits, *max_digits);
// iv. Else if mxfd is undefined, set mxfd to max(mxfdDefault, mnfd).
else if (!max_digits.has_value())
max_digits = max(default_max_fraction_digits, *min_digits);
// v. Else if mnfd is greater than mxfd, throw a RangeError exception.
else if (*min_digits > *max_digits)
return vm.throw_completion<RangeError>(global_object, ErrorType::IntlMinimumExceedsMaximum, *min_digits, *max_digits);
// vi. Set intlObj.[[MinimumFractionDigits]] to mnfd.
intl_object.set_min_fraction_digits(*min_digits);
// vii. Set intlObj.[[MaximumFractionDigits]] to mxfd.
intl_object.set_max_fraction_digits(*max_digits);
}
// b. Else,
else {
// i. Set intlObj.[[MinimumFractionDigits]] to mnfdDefault.
intl_object.set_min_fraction_digits(default_min_fraction_digits);
// ii. Set intlObj.[[MaximumFractionDigits]] to mxfdDefault.
intl_object.set_max_fraction_digits(default_max_fraction_digits);
}
}
// 16. If needSd is false and needFd is false, then
if (!need_significant_digits && !need_fraction_digits) {
// a. Set intlObj.[[RoundingType]] to compactRounding.
intl_object.set_rounding_type(NumberFormat::RoundingType::CompactRounding);
}
// 17. Else if hasSd is true, then
else if (has_significant_digits) {
// a. Set intlObj.[[RoundingType]] to significantDigits.
intl_object.set_rounding_type(NumberFormat::RoundingType::SignificantDigits);
}
// 18. Else,
else {
// a. Set intlObj.[[RoundingType]] to fractionDigits.
intl_object.set_rounding_type(NumberFormat::RoundingType::FractionDigits);
}
return {};
}
// 15.1.2 InitializeNumberFormat ( numberFormat, locales, options ), https://tc39.es/ecma402/#sec-initializenumberformat
ThrowCompletionOr<NumberFormat*> initialize_number_format(GlobalObject& global_object, NumberFormat& number_format, Value locales_value, Value options_value)
{
auto& vm = global_object.vm();
// 1. Let requestedLocales be ? CanonicalizeLocaleList(locales).
auto requested_locales = TRY(canonicalize_locale_list(global_object, locales_value));
// 2. Set options to ? CoerceOptionsToObject(options).
auto* options = TRY(coerce_options_to_object(global_object, options_value));
// 3. Let opt be a new Record.
LocaleOptions opt {};
// 4. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").
auto matcher = TRY(get_option(global_object, *options, vm.names.localeMatcher, Value::Type::String, { "lookup"sv, "best fit"sv }, "best fit"sv));
// 5. Set opt.[[localeMatcher]] to matcher.
opt.locale_matcher = matcher;
// 6. Let numberingSystem be ? GetOption(options, "numberingSystem", "string", undefined, undefined).
auto numbering_system = TRY(get_option(global_object, *options, vm.names.numberingSystem, Value::Type::String, {}, Empty {}));
// 7. If numberingSystem is not undefined, then
if (!numbering_system.is_undefined()) {
// a. If numberingSystem does not match the Unicode Locale Identifier type nonterminal, throw a RangeError exception.
if (!Unicode::is_type_identifier(numbering_system.as_string().string()))
return vm.throw_completion<RangeError>(global_object, ErrorType::OptionIsNotValidValue, numbering_system, "numberingSystem"sv);
// 8. Set opt.[[nu]] to numberingSystem.
opt.nu = numbering_system.as_string().string();
}
// 9. Let localeData be %NumberFormat%.[[LocaleData]].
// 10. Let r be ResolveLocale(%NumberFormat%.[[AvailableLocales]], requestedLocales, opt, %NumberFormat%.[[RelevantExtensionKeys]], localeData).
auto result = resolve_locale(requested_locales, opt, NumberFormat::relevant_extension_keys());
// 11. Set numberFormat.[[Locale]] to r.[[locale]].
number_format.set_locale(move(result.locale));
// 12. Set numberFormat.[[DataLocale]] to r.[[dataLocale]].
number_format.set_data_locale(move(result.data_locale));
// 13. Set numberFormat.[[NumberingSystem]] to r.[[nu]].
number_format.set_numbering_system(result.nu.release_value());
// 14. Perform ? SetNumberFormatUnitOptions(numberFormat, options).
TRY(set_number_format_unit_options(global_object, number_format, *options));
// 15. Let style be numberFormat.[[Style]].
auto style = number_format.style();
int default_min_fraction_digits = 0;
int default_max_fraction_digits = 0;
// 16. If style is "currency", then
if (style == NumberFormat::Style::Currency) {
// a. Let currency be numberFormat.[[Currency]].
auto const& currency = number_format.currency();
// b. Let cDigits be CurrencyDigits(currency).
int digits = currency_digits(currency);
// c. Let mnfdDefault be cDigits.
default_min_fraction_digits = digits;
// d. Let mxfdDefault be cDigits.
default_max_fraction_digits = digits;
}
// 17. Else,
else {
// a. Let mnfdDefault be 0.
default_min_fraction_digits = 0;
// b. If style is "percent", then
// i. Let mxfdDefault be 0.
// c. Else,
// i. Let mxfdDefault be 3.
default_max_fraction_digits = style == NumberFormat::Style::Percent ? 0 : 3;
}
// 18. Let notation be ? GetOption(options, "notation", "string", « "standard", "scientific", "engineering", "compact" », "standard").
auto notation = TRY(get_option(global_object, *options, vm.names.notation, Value::Type::String, { "standard"sv, "scientific"sv, "engineering"sv, "compact"sv }, "standard"sv));
// 19. Set numberFormat.[[Notation]] to notation.
number_format.set_notation(notation.as_string().string());
// 20. Perform ? SetNumberFormatDigitOptions(numberFormat, options, mnfdDefault, mxfdDefault, notation).
TRY(set_number_format_digit_options(global_object, number_format, *options, default_min_fraction_digits, default_max_fraction_digits, number_format.notation()));
// 21. Let compactDisplay be ? GetOption(options, "compactDisplay", "string", « "short", "long" », "short").
auto compact_display = TRY(get_option(global_object, *options, vm.names.compactDisplay, Value::Type::String, { "short"sv, "long"sv }, "short"sv));
// 22. If notation is "compact", then
if (number_format.notation() == NumberFormat::Notation::Compact) {
// a. Set numberFormat.[[CompactDisplay]] to compactDisplay.
number_format.set_compact_display(compact_display.as_string().string());
}
// 23. Let useGrouping be ? GetOption(options, "useGrouping", "boolean", undefined, true).
auto use_grouping = TRY(get_option(global_object, *options, vm.names.useGrouping, Value::Type::Boolean, {}, true));
// 24. Set numberFormat.[[UseGrouping]] to useGrouping.
number_format.set_use_grouping(use_grouping.as_bool());
// 25. Let signDisplay be ? GetOption(options, "signDisplay", "string", « "auto", "never", "always", "exceptZero" », "auto").
auto sign_display = TRY(get_option(global_object, *options, vm.names.signDisplay, Value::Type::String, { "auto"sv, "never"sv, "always"sv, "exceptZero"sv }, "auto"sv));
// 26. Set numberFormat.[[SignDisplay]] to signDisplay.
number_format.set_sign_display(sign_display.as_string().string());
// 27. Return numberFormat.
return &number_format;
}
// 15.1.3 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits
int currency_digits(StringView currency)
{
// 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor
// unit value corresponding to the currency from the list; otherwise, return 2.
if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value())
return currency_code->minor_unit.value_or(2);
return 2;
}
// 15.1.5 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring
FormatResult format_numeric_to_string(NumberFormat& number_format, double number)
{
// 1. If x < 0 or x is -0𝔽, let isNegative be true; else let isNegative be false.
bool is_negative = (number < 0.0) || Value(number).is_negative_zero();
// 2. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number *= -1;
}
RawFormatResult result {};
switch (number_format.rounding_type()) {
// 3. If intlObject.[[RoundingType]] is significantDigits, then
case NumberFormat::RoundingType::SignificantDigits:
// a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]]).
result = to_raw_precision(number, number_format.min_significant_digits(), number_format.max_significant_digits());
break;
// 4. Else if intlObject.[[RoundingType]] is fractionDigits, then
case NumberFormat::RoundingType::FractionDigits:
// a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]]).
result = to_raw_fixed(number, number_format.min_fraction_digits(), number_format.max_fraction_digits());
break;
// 5. Else,
case NumberFormat::RoundingType::CompactRounding:
// a. Assert: intlObject.[[RoundingType]] is compactRounding.
// b. Let result be ToRawPrecision(x, 1, 2).
result = to_raw_precision(number, 1, 2);
// c. If result.[[IntegerDigitsCount]] > 1, then
if (result.digits > 1) {
// i. Let result be ToRawFixed(x, 0, 0).
result = to_raw_fixed(number, 0, 0);
}
break;
default:
VERIFY_NOT_REACHED();
}
// 6. Let x be result.[[RoundedNumber]].
number = result.rounded_number;
// 7. Let string be result.[[FormattedString]].
auto string = move(result.formatted_string);
// 8. Let int be result.[[IntegerDigitsCount]].
int digits = result.digits;
// 9. Let minInteger be intlObject.[[MinimumIntegerDigits]].
int min_integer = number_format.min_integer_digits();
// 10. If int < minInteger, then
if (digits < min_integer) {
// a. Let forwardZeros be the String consisting of minIntegerint occurrences of the character "0".
auto forward_zeros = String::repeated('0', min_integer - digits);
// b. Set string to the string-concatenation of forwardZeros and string.
string = String::formatted("{}{}", forward_zeros, string);
}
// 11. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number *= -1;
}
// 12. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }.
return { move(string), number };
}
// 15.1.6 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern
Vector<PatternPartition> partition_number_pattern(NumberFormat& number_format, double number)
{
// 1. Let exponent be 0.
int exponent = 0;
String formatted_string;
// 2. If x is NaN, then
if (Value(number).is_nan()) {
// a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "nan"sv).value_or("NaN"sv);
}
// 3. Else if x is a non-finite Number, then
else if (!Value(number).is_finite_number()) {
// a. Let n be an ILD String value indicating infinity.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "infinity"sv).value_or("infinity"sv);
}
// 4. Else,
else {
// a. If numberFormat.[[Style]] is "percent", let x be 100 × x.
if (number_format.style() == NumberFormat::Style::Percent)
number = number * 100;
// b. Let exponent be ComputeExponent(numberFormat, x).
exponent = compute_exponent(number_format, number);
// c. Let x be x × 10^(-exponent).
number *= pow(10, -exponent);
// d. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(number_format, number);
// e. Let n be formatNumberResult.[[FormattedString]].
formatted_string = move(format_number_result.formatted_string);
// f. Let x be formatNumberResult.[[RoundedNumber]].
number = format_number_result.rounded_number;
}
Unicode::NumberFormat found_pattern {};
// 5. Let pattern be GetNumberFormatPattern(numberFormat, x).
auto pattern = get_number_format_pattern(number_format, number, found_pattern);
if (!pattern.has_value())
return {};
// 6. Let result be a new empty List.
Vector<PatternPartition> result;
// 7. Let patternParts be PartitionPattern(pattern).
auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); });
// 8. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// b. If p is "literal", then
if (part == "literal"sv) {
// i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// c. Else if p is equal to "number", then
else if (part == "number"sv) {
// i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent).
auto notation_sub_parts = partition_notation_sub_pattern(number_format, number, formatted_string, exponent);
// ii. Append all elements of notationSubParts to result.
result.extend(move(notation_sub_parts));
}
// d. Else if p is equal to "plusSign", then
else if (part == "plusSign"sv) {
// i. Let plusSignSymbol be the ILND String representing the plus sign.
auto plus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "plusSign"sv).value_or("+"sv);
// ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.
result.append({ "plusSign"sv, plus_sign_symbol });
}
// e. Else if p is equal to "minusSign", then
else if (part == "minusSign"sv) {
// i. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "minusSign"sv).value_or("-"sv);
// ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "minusSign"sv, minus_sign_symbol });
}
// f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then
else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) {
// i. Let percentSignSymbol be the ILND String representing the percent sign.
auto percent_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "percentSign"sv).value_or("%"sv);
// ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.
result.append({ "percentSign"sv, percent_sign_symbol });
}
// g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then
// h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then
else if ((part.starts_with("unitIdentifier:"sv)) && (number_format.style() == NumberFormat::Style::Unit)) {
// Note: Our implementation combines "unitPrefix" and "unitSuffix" into one field, "unitIdentifier".
auto identifier_index = part.substring_view("unitIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// i. Let unit be numberFormat.[[Unit]].
// ii. Let unitDisplay be numberFormat.[[UnitDisplay]].
// iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms.
auto unit_identifier = found_pattern.identifiers[*identifier_index];
// iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result.
result.append({ "unit"sv, unit_identifier });
}
// i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then
// j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then
// k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then
//
// Note: Our implementation manipulates the format string to inject/remove spacing around the
// currency code during GetNumberFormatPattern so that we do not have to do currency
// display / plurality lookups more than once.
else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) {
result.append({ "currency"sv, number_format.resolve_currency_display() });
}
// l. Else,
else {
// i. Let unknown be an ILND String based on x and p.
// ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
// 9. Return result.
return result;
}
static String replace_digits_for_number_format(NumberFormat& number_format, String formatted_string)
{
// https://tc39.es/ecma402/#table-numbering-system-digits
static HashMap<StringView, AK::Array<u32, 10>> s_numbering_system_digits = {
{ "adlm"sv, { 0x1e950, 0x1e951, 0x1e952, 0x1e953, 0x1e954, 0x1e955, 0x1e956, 0x1e957, 0x1e958, 0x1e959 } },
{ "ahom"sv, { 0x11730, 0x11731, 0x11732, 0x11733, 0x11734, 0x11735, 0x11736, 0x11737, 0x11738, 0x11739 } },
{ "arab"sv, { 0x660, 0x661, 0x662, 0x663, 0x664, 0x665, 0x666, 0x667, 0x668, 0x669 } },
{ "arabext"sv, { 0x6f0, 0x6f1, 0x6f2, 0x6f3, 0x6f4, 0x6f5, 0x6f6, 0x6f7, 0x6f8, 0x6f9 } },
{ "bali"sv, { 0x1b50, 0x1b51, 0x1b52, 0x1b53, 0x1b54, 0x1b55, 0x1b56, 0x1b57, 0x1b58, 0x1b59 } },
{ "beng"sv, { 0x9e6, 0x9e7, 0x9e8, 0x9e9, 0x9ea, 0x9eb, 0x9ec, 0x9ed, 0x9ee, 0x9ef } },
{ "bhks"sv, { 0x11c50, 0x11c51, 0x11c52, 0x11c53, 0x11c54, 0x11c55, 0x11c56, 0x11c57, 0x11c58, 0x11c59 } },
{ "brah"sv, { 0x11066, 0x11067, 0x11068, 0x11069, 0x1106a, 0x1106b, 0x1106c, 0x1106d, 0x1106e, 0x1106f } },
{ "cakm"sv, { 0x11136, 0x11137, 0x11138, 0x11139, 0x1113a, 0x1113b, 0x1113c, 0x1113d, 0x1113e, 0x1113f } },
{ "cham"sv, { 0xaa50, 0xaa51, 0xaa52, 0xaa53, 0xaa54, 0xaa55, 0xaa56, 0xaa57, 0xaa58, 0xaa59 } },
{ "deva"sv, { 0x966, 0x967, 0x968, 0x969, 0x96a, 0x96b, 0x96c, 0x96d, 0x96e, 0x96f } },
{ "diak"sv, { 0x11950, 0x11951, 0x11952, 0x11953, 0x11954, 0x11955, 0x11956, 0x11957, 0x11958, 0x11959 } },
{ "fullwide"sv, { 0xff10, 0xff11, 0xff12, 0xff13, 0xff14, 0xff15, 0xff16, 0xff17, 0xff18, 0xff19 } },
{ "gong"sv, { 0x11da0, 0x11da1, 0x11da2, 0x11da3, 0x11da4, 0x11da5, 0x11da6, 0x11da7, 0x11da8, 0x11da9 } },
{ "gonm"sv, { 0x11d50, 0x11d51, 0x11d52, 0x11d53, 0x11d54, 0x11d55, 0x11d56, 0x11d57, 0x11d58, 0x11d59 } },
{ "gujr"sv, { 0xae6, 0xae7, 0xae8, 0xae9, 0xaea, 0xaeb, 0xaec, 0xaed, 0xaee, 0xaef } },
{ "guru"sv, { 0xa66, 0xa67, 0xa68, 0xa69, 0xa6a, 0xa6b, 0xa6c, 0xa6d, 0xa6e, 0xa6f } },
{ "hanidec"sv, { 0x3007, 0x4e00, 0x4e8c, 0x4e09, 0x56db, 0x4e94, 0x516d, 0x4e03, 0x516b, 0x4e5d } },
{ "hmng"sv, { 0x16b50, 0x16b51, 0x16b52, 0x16b53, 0x16b54, 0x16b55, 0x16b56, 0x16b57, 0x16b58, 0x16b59 } },
{ "hmnp"sv, { 0x1e140, 0x1e141, 0x1e142, 0x1e143, 0x1e144, 0x1e145, 0x1e146, 0x1e147, 0x1e148, 0x1e149 } },
{ "java"sv, { 0xa9d0, 0xa9d1, 0xa9d2, 0xa9d3, 0xa9d4, 0xa9d5, 0xa9d6, 0xa9d7, 0xa9d8, 0xa9d9 } },
{ "kali"sv, { 0xa900, 0xa901, 0xa902, 0xa903, 0xa904, 0xa905, 0xa906, 0xa907, 0xa908, 0xa909 } },
{ "khmr"sv, { 0x17e0, 0x17e1, 0x17e2, 0x17e3, 0x17e4, 0x17e5, 0x17e6, 0x17e7, 0x17e8, 0x17e9 } },
{ "knda"sv, { 0xce6, 0xce7, 0xce8, 0xce9, 0xcea, 0xceb, 0xcec, 0xced, 0xcee, 0xcef } },
{ "lana"sv, { 0x1a80, 0x1a81, 0x1a82, 0x1a83, 0x1a84, 0x1a85, 0x1a86, 0x1a87, 0x1a88, 0x1a89 } },
{ "lanatham"sv, { 0x1a90, 0x1a91, 0x1a92, 0x1a93, 0x1a94, 0x1a95, 0x1a96, 0x1a97, 0x1a98, 0x1a99 } },
{ "laoo"sv, { 0xed0, 0xed1, 0xed2, 0xed3, 0xed4, 0xed5, 0xed6, 0xed7, 0xed8, 0xed9 } },
{ "latn"sv, { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 } },
{ "lepc"sv, { 0x1c40, 0x1c41, 0x1c42, 0x1c43, 0x1c44, 0x1c45, 0x1c46, 0x1c47, 0x1c48, 0x1c49 } },
{ "limb"sv, { 0x1946, 0x1947, 0x1948, 0x1949, 0x194a, 0x194b, 0x194c, 0x194d, 0x194e, 0x194f } },
{ "mathbold"sv, { 0x1d7ce, 0x1d7cf, 0x1d7d0, 0x1d7d1, 0x1d7d2, 0x1d7d3, 0x1d7d4, 0x1d7d5, 0x1d7d6, 0x1d7d7 } },
{ "mathdbl"sv, { 0x1d7d8, 0x1d7d9, 0x1d7da, 0x1d7db, 0x1d7dc, 0x1d7dd, 0x1d7de, 0x1d7df, 0x1d7e0, 0x1d7e1 } },
{ "mathmono"sv, { 0x1d7f6, 0x1d7f7, 0x1d7f8, 0x1d7f9, 0x1d7fa, 0x1d7fb, 0x1d7fc, 0x1d7fd, 0x1d7fe, 0x1d7ff } },
{ "mathsanb"sv, { 0x1d7ec, 0x1d7ed, 0x1d7ee, 0x1d7ef, 0x1d7f0, 0x1d7f1, 0x1d7f2, 0x1d7f3, 0x1d7f4, 0x1d7f5 } },
{ "mathsans"sv, { 0x1d7e2, 0x1d7e3, 0x1d7e4, 0x1d7e5, 0x1d7e6, 0x1d7e7, 0x1d7e8, 0x1d7e9, 0x1d7ea, 0x1d7eb } },
{ "mlym"sv, { 0xd66, 0xd67, 0xd68, 0xd69, 0xd6a, 0xd6b, 0xd6c, 0xd6d, 0xd6e, 0xd6f } },
{ "modi"sv, { 0x11650, 0x11651, 0x11652, 0x11653, 0x11654, 0x11655, 0x11656, 0x11657, 0x11658, 0x11659 } },
{ "mong"sv, { 0x1810, 0x1811, 0x1812, 0x1813, 0x1814, 0x1815, 0x1816, 0x1817, 0x1818, 0x1819 } },
{ "mroo"sv, { 0x16a60, 0x16a61, 0x16a62, 0x16a63, 0x16a64, 0x16a65, 0x16a66, 0x16a67, 0x16a68, 0x16a69 } },
{ "mtei"sv, { 0xabf0, 0xabf1, 0xabf2, 0xabf3, 0xabf4, 0xabf5, 0xabf6, 0xabf7, 0xabf8, 0xabf9 } },
{ "mymr"sv, { 0x1040, 0x1041, 0x1042, 0x1043, 0x1044, 0x1045, 0x1046, 0x1047, 0x1048, 0x1049 } },
{ "mymrshan"sv, { 0x1090, 0x1091, 0x1092, 0x1093, 0x1094, 0x1095, 0x1096, 0x1097, 0x1098, 0x1099 } },
{ "mymrtlng"sv, { 0xa9f0, 0xa9f1, 0xa9f2, 0xa9f3, 0xa9f4, 0xa9f5, 0xa9f6, 0xa9f7, 0xa9f8, 0xa9f9 } },
{ "newa"sv, { 0x11450, 0x11451, 0x11452, 0x11453, 0x11454, 0x11455, 0x11456, 0x11457, 0x11458, 0x11459 } },
{ "nkoo"sv, { 0x7c0, 0x7c1, 0x7c2, 0x7c3, 0x7c4, 0x7c5, 0x7c6, 0x7c7, 0x7c8, 0x7c9 } },
{ "olck"sv, { 0x1c50, 0x1c51, 0x1c52, 0x1c53, 0x1c54, 0x1c55, 0x1c56, 0x1c57, 0x1c58, 0x1c59 } },
{ "orya"sv, { 0xb66, 0xb67, 0xb68, 0xb69, 0xb6a, 0xb6b, 0xb6c, 0xb6d, 0xb6e, 0xb6f } },
{ "osma"sv, { 0x104a0, 0x104a1, 0x104a2, 0x104a3, 0x104a4, 0x104a5, 0x104a6, 0x104a7, 0x104a8, 0x104a9 } },
{ "rohg"sv, { 0x10d30, 0x10d31, 0x10d32, 0x10d33, 0x10d34, 0x10d35, 0x10d36, 0x10d37, 0x10d38, 0x10d39 } },
{ "saur"sv, { 0xa8d0, 0xa8d1, 0xa8d2, 0xa8d3, 0xa8d4, 0xa8d5, 0xa8d6, 0xa8d7, 0xa8d8, 0xa8d9 } },
{ "segment"sv, { 0x1fbf0, 0x1fbf1, 0x1fbf2, 0x1fbf3, 0x1fbf4, 0x1fbf5, 0x1fbf6, 0x1fbf7, 0x1fbf8, 0x1fbf9 } },
{ "shrd"sv, { 0x111d0, 0x111d1, 0x111d2, 0x111d3, 0x111d4, 0x111d5, 0x111d6, 0x111d7, 0x111d8, 0x111d9 } },
{ "sind"sv, { 0x112f0, 0x112f1, 0x112f2, 0x112f3, 0x112f4, 0x112f5, 0x112f6, 0x112f7, 0x112f8, 0x112f9 } },
{ "sinh"sv, { 0xde6, 0xde7, 0xde8, 0xde9, 0xdea, 0xdeb, 0xdec, 0xded, 0xdee, 0xdef } },
{ "sora"sv, { 0x110f0, 0x110f1, 0x110f2, 0x110f3, 0x110f4, 0x110f5, 0x110f6, 0x110f7, 0x110f8, 0x110f9 } },
{ "sund"sv, { 0x1bb0, 0x1bb1, 0x1bb2, 0x1bb3, 0x1bb4, 0x1bb5, 0x1bb6, 0x1bb7, 0x1bb8, 0x1bb9 } },
{ "takr"sv, { 0x116c0, 0x116c1, 0x116c2, 0x116c3, 0x116c4, 0x116c5, 0x116c6, 0x116c7, 0x116c8, 0x116c9 } },
{ "talu"sv, { 0x19d0, 0x19d1, 0x19d2, 0x19d3, 0x19d4, 0x19d5, 0x19d6, 0x19d7, 0x19d8, 0x19d9 } },
{ "tamldec"sv, { 0xbe6, 0xbe7, 0xbe8, 0xbe9, 0xbea, 0xbeb, 0xbec, 0xbed, 0xbee, 0xbef } },
{ "telu"sv, { 0xc66, 0xc67, 0xc68, 0xc69, 0xc6a, 0xc6b, 0xc6c, 0xc6d, 0xc6e, 0xc6f } },
{ "thai"sv, { 0xe50, 0xe51, 0xe52, 0xe53, 0xe54, 0xe55, 0xe56, 0xe57, 0xe58, 0xe59 } },
{ "tibt"sv, { 0xf20, 0xf21, 0xf22, 0xf23, 0xf24, 0xf25, 0xf26, 0xf27, 0xf28, 0xf29 } },
{ "tirh"sv, { 0x114d0, 0x114d1, 0x114d2, 0x114d3, 0x114d4, 0x114d5, 0x114d6, 0x114d7, 0x114d8, 0x114d9 } },
{ "vaii"sv, { 0xa620, 0xa621, 0xa622, 0xa623, 0xa624, 0xa625, 0xa626, 0xa627, 0xa628, 0xa629 } },
{ "wara"sv, { 0x118e0, 0x118e1, 0x118e2, 0x118e3, 0x118e4, 0x118e5, 0x118e6, 0x118e7, 0x118e8, 0x118e9 } },
{ "wcho"sv, { 0x1e2f0, 0x1e2f1, 0x1e2f2, 0x1e2f3, 0x1e2f4, 0x1e2f5, 0x1e2f6, 0x1e2f7, 0x1e2f8, 0x1e2f9 } },
};
auto digits = s_numbering_system_digits.get(number_format.numbering_system());
if (!digits.has_value())
digits = s_numbering_system_digits.get("latn"sv);
VERIFY(digits.has_value());
StringBuilder builder;
for (auto& ch : formatted_string) {
if (is_ascii_digit(ch)) {
u32 digit = digits->at(parse_ascii_digit(ch));
builder.append_code_point(digit);
} else {
builder.append(ch);
}
}
return builder.build();
}
static Vector<StringView> separate_integer_into_groups(Unicode::NumberGroupings const& grouping_sizes, StringView integer)
{
Utf8View utf8_integer { integer };
Vector<StringView> groups;
auto add_group = [&](size_t index, size_t length) {
groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string());
};
if (utf8_integer.length() > grouping_sizes.primary_grouping_size) {
size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size;
add_group(index, grouping_sizes.primary_grouping_size);
while (index > grouping_sizes.secondary_grouping_size) {
index -= grouping_sizes.secondary_grouping_size;
add_group(index, grouping_sizes.secondary_grouping_size);
}
if (index > 0)
add_group(0, index);
} else {
groups.append(integer);
}
return groups;
}
// 15.1.7 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern
Vector<PatternPartition> partition_notation_sub_pattern(NumberFormat& number_format, double number, String formatted_string, int exponent)
{
// 1. Let result be a new empty List.
Vector<PatternPartition> result;
auto grouping_sizes = Unicode::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system());
if (!grouping_sizes.has_value())
return {};
// 2. If x is NaN, then
if (Value(number).is_nan()) {
// a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.
result.append({ "nan"sv, move(formatted_string) });
}
// 3. Else if x is a non-finite Number, then
else if (!Value(number).is_finite_number()) {
// a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.
result.append({ "infinity"sv, move(formatted_string) });
}
// 4. Else,
else {
// a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent).
auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent);
if (!notation_sub_pattern.has_value())
return {};
// b. Let patternParts be PartitionPattern(notationSubPattern).
auto pattern_parts = partition_pattern(*notation_sub_pattern);
// c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// i. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// ii. If p is "literal", then
if (part == "literal"sv) {
// 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// iii. Else if p is equal to "number", then
else if (part == "number"sv) {
// 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 10 below, then
// a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 10.
// b. Replace each digit in n with the value of digits[digit].
// 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system.
formatted_string = replace_digits_for_number_format(number_format, move(formatted_string));
// 3. Let decimalSepIndex be ! StringIndexOf(n, ".", 0).
auto decimal_sep_index = formatted_string.find('.');
StringView integer;
Optional<StringView> fraction;
// 4. If decimalSepIndex > 0, then
if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) {
// a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
integer = formatted_string.substring_view(0, *decimal_sep_index);
// b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.
fraction = formatted_string.substring_view(*decimal_sep_index + 1);
}
// 5. Else,
else {
// a. Let integer be n.
integer = formatted_string;
// b. Let fraction be undefined.
}
bool use_grouping = number_format.use_grouping();
// FIXME: The spec doesn't indicate this, but grouping should be disabled for numbers less than 10,000 when the notation is compact.
// This is addressed in Intl.NumberFormat V3 with the "min2" [[UseGrouping]] option. However, test262 explicitly expects this
// behavior in the "de-DE" locale tests, because this is how ICU (and therefore V8, SpiderMoney, etc.) has always behaved.
//
// So, in locales "de-*", we must have:
// Intl.NumberFormat("de", {notation: "compact"}).format(1234) === "1234"
// Intl.NumberFormat("de", {notation: "compact"}).format(12345) === "12.345"
// Intl.NumberFormat("de").format(1234) === "1.234"
// Intl.NumberFormat("de").format(12345) === "12.345"
//
// See: https://github.com/tc39/proposal-intl-numberformat-v3/issues/3
if (number_format.has_compact_format())
use_grouping = number >= 10'000;
// 6. If the numberFormat.[[UseGrouping]] is true, then
if (use_grouping) {
// a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator.
auto group_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "group"sv).value_or(","sv);
// b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer.
auto groups = separate_integer_into_groups(*grouping_sizes, integer);
// c. Assert: The number of elements in groups List is greater than 0.
VERIFY(!groups.is_empty());
// d. Repeat, while groups List is not empty,
while (!groups.is_empty()) {
// i. Remove the first element from groups and let integerGroup be the value of that element.
auto integer_group = groups.take_first();
// ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result.
result.append({ "integer"sv, integer_group });
// iii. If groups List is not empty, then
if (!groups.is_empty()) {
// i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result.
result.append({ "group"sv, group_sep_symbol });
}
}
}
// 7. Else,
else {
// a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.
result.append({ "integer"sv, integer });
}
// 8. If fraction is not undefined, then
if (fraction.has_value()) {
// a. Let decimalSepSymbol be the ILND String representing the decimal separator.
auto decimal_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "decimal"sv).value_or("."sv);
// b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result.
result.append({ "decimal"sv, decimal_sep_symbol });
// c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
result.append({ "fraction"sv, fraction.release_value() });
}
}
// iv. Else if p is equal to "compactSymbol", then
// v. Else if p is equal to "compactName", then
else if (part.starts_with("compactIdentifier:"sv)) {
// Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier".
auto identifier_index = part.substring_view("compactIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder.
auto compact_identifier = number_format.compact_format().identifiers[*identifier_index];
// 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result.
result.append({ "compact"sv, compact_identifier });
}
// vi. Else if p is equal to "scientificSeparator", then
else if (part == "scientificSeparator"sv) {
// 1. Let scientificSeparator be the ILND String representing the exponent separator.
auto scientific_separator = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "exponential"sv).value_or("E"sv);
// 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result.
result.append({ "exponentSeparator"sv, scientific_separator });
}
// vii. Else if p is equal to "scientificExponent", then
else if (part == "scientificExponent"sv) {
// 1. If exponent < 0, then
if (exponent < 0) {
// a. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "minusSign"sv).value_or("-"sv);
// b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "exponentMinusSign"sv, minus_sign_symbol });
// c. Let exponent be -exponent.
exponent *= -1;
}
// 2. Let exponentResult be ToRawFixed(exponent, 1, 0, 0).
// Note: See the implementation of ToRawFixed for why we do not pass the 1.
auto exponent_result = to_raw_fixed(exponent, 0, 0);
// FIXME: The spec does not say to do this, but all of major engines perform this replacement.
// Without this, formatting with non-Latin numbering systems will produce non-localized results.
exponent_result.formatted_string = replace_digits_for_number_format(number_format, move(exponent_result.formatted_string));
// 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result.
result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) });
}
// viii. Else,
else {
// 1. Let unknown be an ILND String based on x and p.
// 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
}
// 5. Return result.
return result;
}
// 15.1.8 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber
String format_numeric(NumberFormat& number_format, double number)
{
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(number_format, number);
// 2. Let result be the empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 15.1.9 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts
Array* format_numeric_to_parts(GlobalObject& global_object, NumberFormat& number_format, double number)
{
auto& vm = global_object.vm();
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(number_format, number);
// 2. Let result be ArrayCreate(0).
auto* result = MUST(Array::create(global_object, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(global_object, global_object.object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// e. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
static String cut_trailing_zeroes(StringView string, int cut)
{
// These steps are exactly the same between ToRawPrecision and ToRawFixed.
// Repeat, while cut > 0 and the last character of m is "0",
while ((cut > 0) && string.ends_with('0')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
// Decrease cut by 1.
--cut;
}
// If the last character of m is ".", then
if (string.ends_with('.')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
}
return string.to_string();
}
// 15.1.10 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision
RawFormatResult to_raw_precision(double number, int min_precision, int max_precision)
{
RawFormatResult result {};
// 1. Let p be maxPrecision.
int precision = max_precision;
int exponent = 0;
// 2. If x = 0, then
if (number == 0.0) {
// a. Let m be the String consisting of p occurrences of the character "0".
result.formatted_string = String::repeated('0', precision);
// b. Let e be 0.
exponent = 0;
// c. Let xFinal be 0.
result.rounded_number = 0;
}
// 3. Else,
else {
// FIXME: The result of these steps isn't entirely accurate for large values of 'p' (which
// defaults to 21, resulting in numbers on the order of 10^21). Either AK::format or
// our Number::toString AO (double_to_string in Value.cpp) will need to be improved
// to produce more accurate results.
// a. Let e be the base 10 logarithm of x rounded down to the nearest integer.
exponent = log10floor(number);
double power = pow(10, exponent - precision + 1);
// b. Let n be an integer such that 10^(p1) ≤ n < 10^p and for which the exact mathematical value of n × 10^(ep+1) x
// is as close to zero as possible. If there is more than one such n, pick the one for which n × 10^(ep+1) is larger.
double n = round(number / power);
// c. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = Value(n).to_string_without_side_effects();
// d. Let xFinal be n × 10^(ep+1).
result.rounded_number = n * power;
}
// 4. If e ≥ p1, then
if (exponent >= (precision - 1)) {
// a. Let m be the string-concatenation of m and ep+1 occurrences of the character "0".
result.formatted_string = String::formatted(
"{}{}",
result.formatted_string,
String::repeated('0', exponent - precision + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 5. Else if e ≥ 0, then
else if (exponent >= 0) {
// a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p(e+1) characters of m.
result.formatted_string = String::formatted(
"{}.{}",
result.formatted_string.substring_view(0, exponent + 1),
result.formatted_string.substring_view(exponent + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 6. Else,
else {
// a. Assert: e < 0.
// b. Let m be the string-concatenation of the String value "0.", (e+1) occurrences of the character "0", and m.
result.formatted_string = String::formatted(
"0.{}{}",
String::repeated('0', -1 * (exponent + 1)),
result.formatted_string);
// c. Let int be 1.
result.digits = 1;
}
// 7. If m contains the character ".", and maxPrecision > minPrecision, then
if (result.formatted_string.contains('.') && (max_precision > min_precision)) {
// a. Let cut be maxPrecision minPrecision.
int cut = max_precision - min_precision;
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
}
// 8. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.1.11 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed
// NOTE: The spec has a mistake here. The minInteger parameter is unused and is not provided by FormatNumericToString.
RawFormatResult to_raw_fixed(double number, int min_fraction, int max_fraction)
{
RawFormatResult result {};
// 1. Let f be maxFraction.
int fraction = max_fraction;
double power = pow(10, fraction);
// 2. Let n be an integer for which the exact mathematical value of n / 10^f x is as close to zero as possible. If there are two such n, pick the larger n.
double n = round(number * power);
// 3. Let xFinal be n / 10^f.
result.rounded_number = n / power;
// 4. If n = 0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = n == 0.0 ? String("0"sv) : Value(n).to_string_without_side_effects();
// 5. If f ≠ 0, then
if (fraction != 0) {
// a. Let k be the number of characters in m.
auto decimals = result.formatted_string.length();
// b. If k ≤ f, then
if (decimals <= static_cast<size_t>(fraction)) {
// i. Let z be the String value consisting of f+1k occurrences of the character "0".
auto zeroes = String::repeated('0', fraction + 1 - decimals);
// ii. Let m be the string-concatenation of z and m.
result.formatted_string = String::formatted("{}{}", zeroes, result.formatted_string);
// iii. Let k be f+1.
decimals = fraction + 1;
}
// c. Let a be the first kf characters of m, and let b be the remaining f characters of m.
auto a = result.formatted_string.substring_view(0, decimals - fraction);
auto b = result.formatted_string.substring_view(decimals - fraction, fraction);
// d. Let m be the string-concatenation of a, ".", and b.
result.formatted_string = String::formatted("{}.{}", a, b);
// e. Let int be the number of characters in a.
result.digits = a.length();
}
// 6. Else, let int be the number of characters in m.
else {
result.digits = result.formatted_string.length();
}
// 7. Let cut be maxFraction minFraction.
int cut = max_fraction - min_fraction;
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
// 10. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.1.13 SetNumberFormatUnitOptions ( intlObj, options ), https://tc39.es/ecma402/#sec-setnumberformatunitoptions
ThrowCompletionOr<void> set_number_format_unit_options(GlobalObject& global_object, NumberFormat& intl_object, Object const& options)
{
auto& vm = global_object.vm();
// 1. Assert: Type(intlObj) is Object.
// 2. Assert: Type(options) is Object.
// 3. Let style be ? GetOption(options, "style", "string", « "decimal", "percent", "currency", "unit" », "decimal").
auto style = TRY(get_option(global_object, options, vm.names.style, Value::Type::String, { "decimal"sv, "percent"sv, "currency"sv, "unit"sv }, "decimal"sv));
// 4. Set intlObj.[[Style]] to style.
intl_object.set_style(style.as_string().string());
// 5. Let currency be ? GetOption(options, "currency", "string", undefined, undefined).
auto currency = TRY(get_option(global_object, options, vm.names.currency, Value::Type::String, {}, Empty {}));
// 6. If currency is undefined, then
if (currency.is_undefined()) {
// a. If style is "currency", throw a TypeError exception.
if (intl_object.style() == NumberFormat::Style::Currency)
return vm.throw_completion<TypeError>(global_object, ErrorType::IntlOptionUndefined, "currency"sv, "style"sv, style);
}
// 7. Else,
// a. If the result of IsWellFormedCurrencyCode(currency) is false, throw a RangeError exception.
else if (!is_well_formed_currency_code(currency.as_string().string()))
return vm.throw_completion<RangeError>(global_object, ErrorType::OptionIsNotValidValue, currency, "currency"sv);
// 8. Let currencyDisplay be ? GetOption(options, "currencyDisplay", "string", « "code", "symbol", "narrowSymbol", "name" », "symbol").
auto currency_display = TRY(get_option(global_object, options, vm.names.currencyDisplay, Value::Type::String, { "code"sv, "symbol"sv, "narrowSymbol"sv, "name"sv }, "symbol"sv));
// 9. Let currencySign be ? GetOption(options, "currencySign", "string", « "standard", "accounting" », "standard").
auto currency_sign = TRY(get_option(global_object, options, vm.names.currencySign, Value::Type::String, { "standard"sv, "accounting"sv }, "standard"sv));
// 10. Let unit be ? GetOption(options, "unit", "string", undefined, undefined).
auto unit = TRY(get_option(global_object, options, vm.names.unit, Value::Type::String, {}, Empty {}));
// 11. If unit is undefined, then
if (unit.is_undefined()) {
// a. If style is "unit", throw a TypeError exception.
if (intl_object.style() == NumberFormat::Style::Unit)
return vm.throw_completion<TypeError>(global_object, ErrorType::IntlOptionUndefined, "unit"sv, "style"sv, style);
}
// 12. Else,
// a. If the result of IsWellFormedUnitIdentifier(unit) is false, throw a RangeError exception.
else if (!is_well_formed_unit_identifier(unit.as_string().string()))
return vm.throw_completion<RangeError>(global_object, ErrorType::OptionIsNotValidValue, unit, "unit"sv);
// 13. Let unitDisplay be ? GetOption(options, "unitDisplay", "string", « "short", "narrow", "long" », "short").
auto unit_display = TRY(get_option(global_object, options, vm.names.unitDisplay, Value::Type::String, { "short"sv, "narrow"sv, "long"sv }, "short"sv));
// 14. If style is "currency", then
if (intl_object.style() == NumberFormat::Style::Currency) {
// a. Let currency be the result of converting currency to upper case as specified in 6.1.
// b. Set intlObj.[[Currency]] to currency.
intl_object.set_currency(currency.as_string().string().to_uppercase());
// c. Set intlObj.[[CurrencyDisplay]] to currencyDisplay.
intl_object.set_currency_display(currency_display.as_string().string());
// d. Set intlObj.[[CurrencySign]] to currencySign.
intl_object.set_currency_sign(currency_sign.as_string().string());
}
// 15. If style is "unit", then
if (intl_object.style() == NumberFormat::Style::Unit) {
// a. Set intlObj.[[Unit]] to unit.
intl_object.set_unit(unit.as_string().string());
// b. Set intlObj.[[UnitDisplay]] to unitDisplay.
intl_object.set_unit_display(unit_display.as_string().string());
}
return {};
}
// 15.1.14 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern
Optional<Variant<StringView, String>> get_number_format_pattern(NumberFormat& number_format, double number, Unicode::NumberFormat& found_pattern)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let patterns be dataLocaleData.[[patterns]].
// 5. Assert: patterns is a Record (see 15.3.3).
Optional<Unicode::NumberFormat> patterns;
// 6. Let style be numberFormat.[[Style]].
switch (number_format.style()) {
// 7. If style is "percent", then
case NumberFormat::Style::Percent:
// a. Let patterns be patterns.[[percent]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Percent);
break;
// 8. Else if style is "unit", then
case NumberFormat::Style::Unit: {
// a. Let unit be numberFormat.[[Unit]].
// b. Let unitDisplay be numberFormat.[[UnitDisplay]].
// c. Let patterns be patterns.[[unit]].
// d. If patterns doesn't have a field [[<unit>]], then
// i. Let unit be "fallback".
// e. Let patterns be patterns.[[<unit>]].
// f. Let patterns be patterns.[[<unitDisplay>]].
Vector<Unicode::NumberFormat> formats;
switch (number_format.unit_display()) {
case NumberFormat::UnitDisplay::Long:
formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), Unicode::Style::Long);
break;
case NumberFormat::UnitDisplay::Short:
formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), Unicode::Style::Short);
break;
case NumberFormat::UnitDisplay::Narrow:
formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), Unicode::Style::Narrow);
break;
}
patterns = Unicode::select_pattern_with_plurality(formats, number);
break;
}
// 9. Else if style is "currency", then
case NumberFormat::Style::Currency:
// a. Let currency be numberFormat.[[Currency]].
// b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]].
// c. Let currencySign be numberFormat.[[CurrencySign]].
// d. Let patterns be patterns.[[currency]].
// e. If patterns doesn't have a field [[<currency>]], then
// i. Let currency be "fallback".
// f. Let patterns be patterns.[[<currency>]].
// g. Let patterns be patterns.[[<currencyDisplay>]].
// h. Let patterns be patterns.[[<currencySign>]].
// Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]].
if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) {
auto formats = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyUnit);
auto maybe_patterns = Unicode::select_pattern_with_plurality(formats, number);
if (maybe_patterns.has_value()) {
patterns = maybe_patterns.release_value();
break;
}
}
switch (number_format.currency_sign()) {
case NumberFormat::CurrencySign::Standard:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Currency);
break;
case NumberFormat::CurrencySign::Accounting:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Accounting);
break;
}
break;
// 10. Else,
case NumberFormat::Style::Decimal:
// a. Assert: style is "decimal".
// b. Let patterns be patterns.[[decimal]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Decimal);
break;
default:
VERIFY_NOT_REACHED();
}
if (!patterns.has_value())
return {};
StringView pattern;
Value number_value(number);
bool is_positive_zero = number_value.is_positive_zero();
bool is_negative_zero = number_value.is_negative_zero();
bool is_nan = number_value.is_nan();
// 11. Let signDisplay be numberFormat.[[SignDisplay]].
switch (number_format.sign_display()) {
// 12. If signDisplay is "never", then
case NumberFormat::SignDisplay::Never:
// a. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
break;
// 13. Else if signDisplay is "auto", then
case NumberFormat::SignDisplay::Auto:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || (number > 0) || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 14. Else if signDisplay is "always", then
case NumberFormat::SignDisplay::Always:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || (number > 0) || is_nan) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 15. Else,
case NumberFormat::SignDisplay::ExceptZero:
// a. Assert: signDisplay is "exceptZero".
// b. If x is 0 or x is -0 or x is NaN, then
if (is_positive_zero || is_negative_zero || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// c. Else if x > 0, then
else if (number > 0) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// d. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
default:
VERIFY_NOT_REACHED();
}
found_pattern = patterns.release_value();
// Handling of steps 9b/9g: Depending on the currency display and the format pattern found above,
// we might need to mutate the format pattern to inject a space between the currency display and
// the currency number.
if (number_format.style() == NumberFormat::Style::Currency) {
auto modified_pattern = Unicode::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern);
if (modified_pattern.has_value())
return modified_pattern.release_value();
}
// 16. Return pattern.
return pattern;
}
// 15.1.15 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern
Optional<StringView> get_notation_sub_pattern(NumberFormat& number_format, int exponent)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]].
// 5. Assert: notationSubPatterns is a Record (see 15.3.3).
// 6. Let notation be numberFormat.[[Notation]].
auto notation = number_format.notation();
// 7. If notation is "scientific" or notation is "engineering", then
if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) {
// a. Return notationSubPatterns.[[scientific]].
auto notation_sub_patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Scientific);
if (!notation_sub_patterns.has_value())
return {};
return notation_sub_patterns->zero_format;
}
// 8. Else if exponent is not 0, then
else if (exponent != 0) {
// a. Assert: notation is "compact".
VERIFY(notation == NumberFormat::Notation::Compact);
// b. Let compactDisplay be numberFormat.[[CompactDisplay]].
// c. Let compactPatterns be notationSubPatterns.[[compact]].[[<compactDisplay>]].
// d. Return compactPatterns.[[<exponent>]].
if (number_format.has_compact_format())
return number_format.compact_format().zero_format;
}
// 9. Else,
// a. Return "{number}".
return "{number}"sv;
}
// 15.1.16 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent
int compute_exponent(NumberFormat& number_format, double number)
{
// 1. If x = 0, then
if (number == 0.0) {
// a. Return 0.
return 0;
}
// 2. If x < 0, then
if (number < 0) {
// a. Let x = -x.
number *= -1;
}
// 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer.
int magnitude = log10floor(number);
// 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude).
int exponent = compute_exponent_for_magniude(number_format, magnitude);
// 5. Let x be x × 10^(-exponent).
number *= pow(10, -exponent);
// 6. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(number_format, number);
// 7. If formatNumberResult.[[RoundedNumber]] = 0, then
if (format_number_result.rounded_number == 0) {
// a. Return exponent.
return exponent;
}
// 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer.
int new_magnitude = log10floor(format_number_result.rounded_number);
// 9. If newMagnitude is magnitude exponent, then
if (new_magnitude == magnitude - exponent) {
// a. Return exponent.
return exponent;
}
// 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1).
return compute_exponent_for_magniude(number_format, magnitude + 1);
}
// 15.1.17 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude
int compute_exponent_for_magniude(NumberFormat& number_format, int magnitude)
{
// 1. Let notation be numberFormat.[[Notation]].
switch (number_format.notation()) {
// 2. If notation is "standard", then
case NumberFormat::Notation::Standard:
// a. Return 0.
return 0;
// 3. Else if notation is "scientific", then
case NumberFormat::Notation::Scientific:
// a. Return magnitude.
return magnitude;
// 4. Else if notation is "engineering", then
case NumberFormat::Notation::Engineering: {
// a. Let thousands be the greatest integer that is not greater than magnitude / 3.
double thousands = floor(static_cast<double>(magnitude) / 3.0);
// b. Return thousands × 3.
return static_cast<int>(thousands) * 3;
}
// 5. Else,
case NumberFormat::Notation::Compact: {
// a. Assert: notation is "compact".
VERIFY(number_format.has_compact_display());
// b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale.
// c. Return exponent.
Vector<Unicode::NumberFormat> format_rules;
if (number_format.style() == NumberFormat::Style::Currency)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyShort);
else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalLong);
else
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalShort);
Unicode::NumberFormat const* best_number_format = nullptr;
for (auto const& format_rule : format_rules) {
if (format_rule.magnitude > magnitude)
break;
best_number_format = &format_rule;
}
if (best_number_format == nullptr)
return 0;
number_format.set_compact_format(*best_number_format);
return best_number_format->exponent;
}
default:
VERIFY_NOT_REACHED();
}
}
}