
The result of a SQL statement execution is either: 1. An error. 2. The list of rows inserted, deleted, selected, etc. (2) is currently represented by a combination of the Result class and the ResultSet list it holds. This worked okay, but issues start to arise when trying to use Result in non-statement contexts (for example, when introducing Result to SQL expression execution). What we really need is for Result to be a thin wrapper that represents both (1) and (2), and to not have any explicit members like a ResultSet. So this commit removes ResultSet from Result, and introduces ResultOr, which is just an alias for AK::ErrorOrr. Statement execution now returns ResultOr<ResultSet> instead of Result. This further opens the door for expression execution to return ResultOr<Value> in the future. Lastly, this moves some other context held by Result over to ResultSet. This includes the row count (which is really just the size of ResultSet) and the command for which the result is for.
80 lines
2.9 KiB
C++
80 lines
2.9 KiB
C++
/*
|
|
* Copyright (c) 2021, Jan de Visser <jan@de-visser.net>
|
|
* Copyright (c) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <LibSQL/AST/AST.h>
|
|
#include <LibSQL/Database.h>
|
|
#include <LibSQL/Meta.h>
|
|
#include <LibSQL/Row.h>
|
|
|
|
namespace SQL::AST {
|
|
|
|
static bool does_value_data_type_match(SQLType expected, SQLType actual)
|
|
{
|
|
if (actual == SQLType::Null)
|
|
return false;
|
|
if (expected == SQLType::Integer)
|
|
return actual == SQLType::Integer || actual == SQLType::Float;
|
|
return expected == actual;
|
|
}
|
|
|
|
ResultOr<ResultSet> Insert::execute(ExecutionContext& context) const
|
|
{
|
|
auto table_def = TRY(context.database->get_table(m_schema_name, m_table_name));
|
|
|
|
if (!table_def) {
|
|
auto schema_name = m_schema_name.is_empty() ? String("default"sv) : m_schema_name;
|
|
return Result { SQLCommand::Insert, SQLErrorCode::TableDoesNotExist, String::formatted("{}.{}", schema_name, m_table_name) };
|
|
}
|
|
|
|
Row row(table_def);
|
|
for (auto& column : m_column_names) {
|
|
if (!row.has(column))
|
|
return Result { SQLCommand::Insert, SQLErrorCode::ColumnDoesNotExist, column };
|
|
}
|
|
|
|
ResultSet result { SQLCommand::Insert };
|
|
TRY(result.try_ensure_capacity(m_chained_expressions.size()));
|
|
|
|
context.result = Result { SQLCommand::Insert };
|
|
|
|
for (auto& row_expr : m_chained_expressions) {
|
|
for (auto& column_def : table_def->columns()) {
|
|
if (!m_column_names.contains_slow(column_def.name()))
|
|
row[column_def.name()] = column_def.default_value();
|
|
}
|
|
|
|
auto row_value = row_expr.evaluate(context);
|
|
if (context.result->is_error())
|
|
return context.result.release_value();
|
|
|
|
VERIFY(row_value.type() == SQLType::Tuple);
|
|
auto values = row_value.to_vector().value();
|
|
|
|
if (m_column_names.is_empty() && values.size() != row.size())
|
|
return Result { SQLCommand::Insert, SQLErrorCode::InvalidNumberOfValues, String::empty() };
|
|
|
|
for (auto ix = 0u; ix < values.size(); ix++) {
|
|
auto input_value_type = values[ix].type();
|
|
auto& tuple_descriptor = *row.descriptor();
|
|
// In case of having column names, this must succeed since we checked for every column name for existence in the table.
|
|
auto element_index = m_column_names.is_empty() ? ix : tuple_descriptor.find_if([&](auto element) { return element.name == m_column_names[ix]; }).index();
|
|
auto element_type = tuple_descriptor[element_index].type;
|
|
|
|
if (!does_value_data_type_match(element_type, input_value_type))
|
|
return Result { SQLCommand::Insert, SQLErrorCode::InvalidValueType, table_def->columns()[element_index].name() };
|
|
|
|
row[element_index] = values[ix];
|
|
}
|
|
|
|
TRY(context.database->insert(row));
|
|
result.insert_row(row, {});
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
}
|