ladybird/Userland/Libraries/LibJS/Bytecode/Interpreter.cpp
Aliaksandr Kalenik 210a5d77dc LibJS: Use a local variable for arguments object when possible
This allows us to skip allocating a function environment in cases where
it was previously impossible because the arguments object needed a
binding.

This change does not bring visible improvement in Kraken or Octane
benchmarks but seems useful to have anyway.
2024-05-21 11:24:50 +02:00

2735 lines
114 KiB
C++

/*
* Copyright (c) 2021-2024, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/HashTable.h>
#include <AK/TemporaryChange.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/CommonImplementations.h>
#include <LibJS/Bytecode/Generator.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Label.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/DeclarativeEnvironment.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Environment.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Iterator.h>
#include <LibJS/Runtime/MathObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/ObjectEnvironment.h>
#include <LibJS/Runtime/Realm.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/Value.h>
#include <LibJS/Runtime/ValueInlines.h>
#include <LibJS/SourceTextModule.h>
namespace JS::Bytecode {
bool g_dump_bytecode = false;
static ByteString format_operand(StringView name, Operand operand, Bytecode::Executable const& executable)
{
StringBuilder builder;
if (!name.is_empty())
builder.appendff("\033[32m{}\033[0m:", name);
switch (operand.type()) {
case Operand::Type::Register:
builder.appendff("\033[33mreg{}\033[0m", operand.index());
break;
case Operand::Type::Local:
// FIXME: Show local name.
builder.appendff("\033[34mloc{}\033[0m", operand.index());
break;
case Operand::Type::Constant: {
builder.append("\033[36m"sv);
auto value = executable.constants[operand.index() - executable.number_of_registers];
if (value.is_empty())
builder.append("<Empty>"sv);
else if (value.is_boolean())
builder.appendff("Bool({})", value.as_bool() ? "true"sv : "false"sv);
else if (value.is_int32())
builder.appendff("Int32({})", value.as_i32());
else if (value.is_double())
builder.appendff("Double({})", value.as_double());
else if (value.is_bigint())
builder.appendff("BigInt({})", value.as_bigint().to_byte_string());
else if (value.is_string())
builder.appendff("String(\"{}\")", value.as_string().utf8_string_view());
else if (value.is_undefined())
builder.append("Undefined"sv);
else if (value.is_null())
builder.append("Null"sv);
else
builder.appendff("Value: {}", value);
builder.append("\033[0m"sv);
break;
}
default:
VERIFY_NOT_REACHED();
}
return builder.to_byte_string();
}
static ByteString format_operand_list(StringView name, ReadonlySpan<Operand> operands, Bytecode::Executable const& executable)
{
StringBuilder builder;
if (!name.is_empty())
builder.appendff("\033[32m{}\033[0m:[", name);
for (size_t i = 0; i < operands.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.appendff("{}", format_operand(""sv, operands[i], executable));
}
builder.append("]"sv);
return builder.to_byte_string();
}
static ByteString format_value_list(StringView name, ReadonlySpan<Value> values)
{
StringBuilder builder;
if (!name.is_empty())
builder.appendff("\033[32m{}\033[0m:[", name);
builder.join(", "sv, values);
builder.append("]"sv);
return builder.to_byte_string();
}
ALWAYS_INLINE static ThrowCompletionOr<Value> loosely_inequals(VM& vm, Value src1, Value src2)
{
if (src1.tag() == src2.tag()) {
if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish())
return Value(src1.encoded() != src2.encoded());
}
return Value(!TRY(is_loosely_equal(vm, src1, src2)));
}
ALWAYS_INLINE static ThrowCompletionOr<Value> loosely_equals(VM& vm, Value src1, Value src2)
{
if (src1.tag() == src2.tag()) {
if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish())
return Value(src1.encoded() == src2.encoded());
}
return Value(TRY(is_loosely_equal(vm, src1, src2)));
}
ALWAYS_INLINE static ThrowCompletionOr<Value> strict_inequals(VM&, Value src1, Value src2)
{
if (src1.tag() == src2.tag()) {
if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish())
return Value(src1.encoded() != src2.encoded());
}
return Value(!is_strictly_equal(src1, src2));
}
ALWAYS_INLINE static ThrowCompletionOr<Value> strict_equals(VM&, Value src1, Value src2)
{
if (src1.tag() == src2.tag()) {
if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish())
return Value(src1.encoded() == src2.encoded());
}
return Value(is_strictly_equal(src1, src2));
}
Interpreter::Interpreter(VM& vm)
: m_vm(vm)
{
}
Interpreter::~Interpreter()
{
}
ALWAYS_INLINE Value Interpreter::get(Operand op) const
{
return m_registers_and_constants_and_locals.data()[op.index()];
}
ALWAYS_INLINE void Interpreter::set(Operand op, Value value)
{
m_registers_and_constants_and_locals.data()[op.index()] = value;
}
ALWAYS_INLINE Value Interpreter::do_yield(Value value, Optional<Label> continuation)
{
auto object = Object::create(realm(), nullptr);
object->define_direct_property("result", value, JS::default_attributes);
if (continuation.has_value())
// FIXME: If we get a pointer, which is not accurately representable as a double
// will cause this to explode
object->define_direct_property("continuation", Value(continuation->address()), JS::default_attributes);
else
object->define_direct_property("continuation", js_null(), JS::default_attributes);
object->define_direct_property("isAwait", Value(false), JS::default_attributes);
return object;
}
// 16.1.6 ScriptEvaluation ( scriptRecord ), https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
ThrowCompletionOr<Value> Interpreter::run(Script& script_record, JS::GCPtr<Environment> lexical_environment_override)
{
auto& vm = this->vm();
// 1. Let globalEnv be scriptRecord.[[Realm]].[[GlobalEnv]].
auto& global_environment = script_record.realm().global_environment();
// 2. Let scriptContext be a new ECMAScript code execution context.
auto script_context = ExecutionContext::create(vm.heap());
// 3. Set the Function of scriptContext to null.
// NOTE: This was done during execution context construction.
// 4. Set the Realm of scriptContext to scriptRecord.[[Realm]].
script_context->realm = &script_record.realm();
// 5. Set the ScriptOrModule of scriptContext to scriptRecord.
script_context->script_or_module = NonnullGCPtr<Script>(script_record);
// 6. Set the VariableEnvironment of scriptContext to globalEnv.
script_context->variable_environment = &global_environment;
// 7. Set the LexicalEnvironment of scriptContext to globalEnv.
script_context->lexical_environment = &global_environment;
// Non-standard: Override the lexical environment if requested.
if (lexical_environment_override)
script_context->lexical_environment = lexical_environment_override;
// 8. Set the PrivateEnvironment of scriptContext to null.
// NOTE: This isn't in the spec, but we require it.
script_context->is_strict_mode = script_record.parse_node().is_strict_mode();
// FIXME: 9. Suspend the currently running execution context.
// 10. Push scriptContext onto the execution context stack; scriptContext is now the running execution context.
TRY(vm.push_execution_context(*script_context, {}));
// 11. Let script be scriptRecord.[[ECMAScriptCode]].
auto& script = script_record.parse_node();
// 12. Let result be Completion(GlobalDeclarationInstantiation(script, globalEnv)).
auto instantiation_result = script.global_declaration_instantiation(vm, global_environment);
Completion result = instantiation_result.is_throw_completion() ? instantiation_result.throw_completion() : normal_completion({});
// 13. If result.[[Type]] is normal, then
if (result.type() == Completion::Type::Normal) {
auto executable_result = JS::Bytecode::Generator::generate_from_ast_node(vm, script, {});
if (executable_result.is_error()) {
if (auto error_string = executable_result.error().to_string(); error_string.is_error())
result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory));
else if (error_string = String::formatted("TODO({})", error_string.value()); error_string.is_error())
result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory));
else
result = JS::throw_completion(JS::InternalError::create(realm(), error_string.release_value()));
} else {
auto executable = executable_result.release_value();
if (g_dump_bytecode)
executable->dump();
// a. Set result to the result of evaluating script.
auto result_or_error = run_executable(*executable, {}, {});
if (result_or_error.value.is_error())
result = result_or_error.value.release_error();
else
result = result_or_error.return_register_value;
}
}
// 14. If result.[[Type]] is normal and result.[[Value]] is empty, then
if (result.type() == Completion::Type::Normal && !result.value().has_value()) {
// a. Set result to NormalCompletion(undefined).
result = normal_completion(js_undefined());
}
// FIXME: 15. Suspend scriptContext and remove it from the execution context stack.
vm.pop_execution_context();
// 16. Assert: The execution context stack is not empty.
VERIFY(!vm.execution_context_stack().is_empty());
// FIXME: 17. Resume the context that is now on the top of the execution context stack as the running execution context.
// At this point we may have already run any queued promise jobs via on_call_stack_emptied,
// in which case this is a no-op.
// FIXME: These three should be moved out of Interpreter::run and give the host an option to run these, as it's up to the host when these get run.
// https://tc39.es/ecma262/#sec-jobs for jobs and https://tc39.es/ecma262/#_ref_3508 for ClearKeptObjects
// finish_execution_generation is particularly an issue for LibWeb, as the HTML spec wants to run it specifically after performing a microtask checkpoint.
// The promise and registry cleanup queues don't cause LibWeb an issue, as LibWeb overrides the hooks that push onto these queues.
vm.run_queued_promise_jobs();
vm.run_queued_finalization_registry_cleanup_jobs();
vm.finish_execution_generation();
// 18. Return ? result.
if (result.is_abrupt()) {
VERIFY(result.type() == Completion::Type::Throw);
return result.release_error();
}
VERIFY(result.value().has_value());
return *result.value();
}
ThrowCompletionOr<Value> Interpreter::run(SourceTextModule& module)
{
// FIXME: This is not a entry point as defined in the spec, but is convenient.
// To avoid work we use link_and_eval_module however that can already be
// dangerous if the vm loaded other modules.
auto& vm = this->vm();
TRY(vm.link_and_eval_module(Badge<Bytecode::Interpreter> {}, module));
vm.run_queued_promise_jobs();
vm.run_queued_finalization_registry_cleanup_jobs();
return js_undefined();
}
Interpreter::HandleExceptionResponse Interpreter::handle_exception(size_t& program_counter, Value exception)
{
reg(Register::exception()) = exception;
m_scheduled_jump = {};
auto handlers = current_executable().exception_handlers_for_offset(program_counter);
if (!handlers.has_value()) {
return HandleExceptionResponse::ExitFromExecutable;
}
auto& handler = handlers->handler_offset;
auto& finalizer = handlers->finalizer_offset;
VERIFY(!running_execution_context().unwind_contexts.is_empty());
auto& unwind_context = running_execution_context().unwind_contexts.last();
VERIFY(unwind_context.executable == m_current_executable);
if (handler.has_value()) {
program_counter = handler.value();
return HandleExceptionResponse::ContinueInThisExecutable;
}
if (finalizer.has_value()) {
program_counter = finalizer.value();
return HandleExceptionResponse::ContinueInThisExecutable;
}
VERIFY_NOT_REACHED();
}
// FIXME: GCC takes a *long* time to compile with flattening, and it will time out our CI. :|
#if defined(AK_COMPILER_CLANG)
# define FLATTEN_ON_CLANG FLATTEN
#else
# define FLATTEN_ON_CLANG
#endif
FLATTEN_ON_CLANG void Interpreter::run_bytecode(size_t entry_point)
{
if (vm().did_reach_stack_space_limit()) {
reg(Register::exception()) = vm().throw_completion<InternalError>(ErrorType::CallStackSizeExceeded).release_value().value();
return;
}
auto& running_execution_context = this->running_execution_context();
auto* arguments = running_execution_context.arguments.data();
auto& accumulator = this->accumulator();
auto& executable = current_executable();
auto const* bytecode = executable.bytecode.data();
size_t program_counter = entry_point;
TemporaryChange change(m_program_counter, Optional<size_t&>(program_counter));
// Declare a lookup table for computed goto with each of the `handle_*` labels
// to avoid the overhead of a switch statement.
// This is a GCC extension, but it's also supported by Clang.
static void* const bytecode_dispatch_table[] = {
#define SET_UP_LABEL(name) &&handle_##name,
ENUMERATE_BYTECODE_OPS(SET_UP_LABEL)
};
#undef SET_UP_LABEL
#define DISPATCH_NEXT(name) \
do { \
if constexpr (Op::name::IsVariableLength) \
program_counter += instruction.length(); \
else \
program_counter += sizeof(Op::name); \
auto& next_instruction = *reinterpret_cast<Instruction const*>(&bytecode[program_counter]); \
goto* bytecode_dispatch_table[static_cast<size_t>(next_instruction.type())]; \
} while (0)
for (;;) {
start:
for (;;) {
goto* bytecode_dispatch_table[static_cast<size_t>((*reinterpret_cast<Instruction const*>(&bytecode[program_counter])).type())];
handle_GetArgument: {
auto const& instruction = *reinterpret_cast<Op::GetArgument const*>(&bytecode[program_counter]);
set(instruction.dst(), arguments[instruction.index()]);
DISPATCH_NEXT(GetArgument);
}
handle_SetArgument: {
auto const& instruction = *reinterpret_cast<Op::SetArgument const*>(&bytecode[program_counter]);
arguments[instruction.index()] = get(instruction.src());
DISPATCH_NEXT(SetArgument);
}
handle_Mov: {
auto& instruction = *reinterpret_cast<Op::Mov const*>(&bytecode[program_counter]);
set(instruction.dst(), get(instruction.src()));
DISPATCH_NEXT(Mov);
}
handle_End: {
auto& instruction = *reinterpret_cast<Op::End const*>(&bytecode[program_counter]);
accumulator = get(instruction.value());
return;
}
handle_Jump: {
auto& instruction = *reinterpret_cast<Op::Jump const*>(&bytecode[program_counter]);
program_counter = instruction.target().address();
goto start;
}
handle_JumpIf: {
auto& instruction = *reinterpret_cast<Op::JumpIf const*>(&bytecode[program_counter]);
if (get(instruction.condition()).to_boolean())
program_counter = instruction.true_target().address();
else
program_counter = instruction.false_target().address();
goto start;
}
handle_JumpTrue: {
auto& instruction = *reinterpret_cast<Op::JumpTrue const*>(&bytecode[program_counter]);
if (get(instruction.condition()).to_boolean()) {
program_counter = instruction.target().address();
goto start;
}
DISPATCH_NEXT(JumpTrue);
}
handle_JumpFalse: {
auto& instruction = *reinterpret_cast<Op::JumpFalse const*>(&bytecode[program_counter]);
if (!get(instruction.condition()).to_boolean()) {
program_counter = instruction.target().address();
goto start;
}
DISPATCH_NEXT(JumpFalse);
}
handle_JumpNullish: {
auto& instruction = *reinterpret_cast<Op::JumpNullish const*>(&bytecode[program_counter]);
if (get(instruction.condition()).is_nullish())
program_counter = instruction.true_target().address();
else
program_counter = instruction.false_target().address();
goto start;
}
#define HANDLE_COMPARISON_OP(op_TitleCase, op_snake_case, numeric_operator) \
handle_Jump##op_TitleCase: \
{ \
auto& instruction = *reinterpret_cast<Op::Jump##op_TitleCase const*>(&bytecode[program_counter]); \
auto lhs = get(instruction.lhs()); \
auto rhs = get(instruction.rhs()); \
if (lhs.is_number() && rhs.is_number()) { \
bool result; \
if (lhs.is_int32() && rhs.is_int32()) { \
result = lhs.as_i32() numeric_operator rhs.as_i32(); \
} else { \
result = lhs.as_double() numeric_operator rhs.as_double(); \
} \
program_counter = result ? instruction.true_target().address() : instruction.false_target().address(); \
goto start; \
} \
auto result = op_snake_case(vm(), get(instruction.lhs()), get(instruction.rhs())); \
if (result.is_error()) { \
if (handle_exception(program_counter, result.error_value()) == HandleExceptionResponse::ExitFromExecutable) \
return; \
goto start; \
} \
if (result.value().to_boolean()) \
program_counter = instruction.true_target().address(); \
else \
program_counter = instruction.false_target().address(); \
goto start; \
}
JS_ENUMERATE_COMPARISON_OPS(HANDLE_COMPARISON_OP)
#undef HANDLE_COMPARISON_OP
handle_JumpUndefined: {
auto& instruction = *reinterpret_cast<Op::JumpUndefined const*>(&bytecode[program_counter]);
if (get(instruction.condition()).is_undefined())
program_counter = instruction.true_target().address();
else
program_counter = instruction.false_target().address();
goto start;
}
handle_EnterUnwindContext: {
auto& instruction = *reinterpret_cast<Op::EnterUnwindContext const*>(&bytecode[program_counter]);
enter_unwind_context();
program_counter = instruction.entry_point().address();
goto start;
}
handle_ContinuePendingUnwind: {
auto& instruction = *reinterpret_cast<Op::ContinuePendingUnwind const*>(&bytecode[program_counter]);
if (auto exception = reg(Register::exception()); !exception.is_empty()) {
if (handle_exception(program_counter, exception) == HandleExceptionResponse::ExitFromExecutable)
return;
goto start;
}
if (!saved_return_value().is_empty()) {
do_return(saved_return_value());
if (auto handlers = executable.exception_handlers_for_offset(program_counter); handlers.has_value()) {
if (auto finalizer = handlers.value().finalizer_offset; finalizer.has_value()) {
VERIFY(!running_execution_context.unwind_contexts.is_empty());
auto& unwind_context = running_execution_context.unwind_contexts.last();
VERIFY(unwind_context.executable == m_current_executable);
reg(Register::saved_return_value()) = reg(Register::return_value());
reg(Register::return_value()) = {};
program_counter = finalizer.value();
// the unwind_context will be pop'ed when entering the finally block
goto start;
}
}
return;
}
auto const old_scheduled_jump = running_execution_context.previously_scheduled_jumps.take_last();
if (m_scheduled_jump.has_value()) {
program_counter = m_scheduled_jump.value();
m_scheduled_jump = {};
} else {
program_counter = instruction.resume_target().address();
// set the scheduled jump to the old value if we continue
// where we left it
m_scheduled_jump = old_scheduled_jump;
}
goto start;
}
handle_ScheduleJump: {
auto& instruction = *reinterpret_cast<Op::ScheduleJump const*>(&bytecode[program_counter]);
m_scheduled_jump = instruction.target().address();
auto finalizer = executable.exception_handlers_for_offset(program_counter).value().finalizer_offset;
VERIFY(finalizer.has_value());
program_counter = finalizer.value();
goto start;
}
#define HANDLE_INSTRUCTION(name) \
handle_##name: \
{ \
auto& instruction = *reinterpret_cast<Op::name const*>(&bytecode[program_counter]); \
{ \
auto result = instruction.execute_impl(*this); \
if (result.is_error()) { \
if (handle_exception(program_counter, result.error_value()) == HandleExceptionResponse::ExitFromExecutable) \
return; \
goto start; \
} \
} \
DISPATCH_NEXT(name); \
}
#define HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(name) \
handle_##name: \
{ \
auto& instruction = *reinterpret_cast<Op::name const*>(&bytecode[program_counter]); \
instruction.execute_impl(*this); \
DISPATCH_NEXT(name); \
}
HANDLE_INSTRUCTION(Add);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(AddPrivateName);
HANDLE_INSTRUCTION(ArrayAppend);
HANDLE_INSTRUCTION(AsyncIteratorClose);
HANDLE_INSTRUCTION(BitwiseAnd);
HANDLE_INSTRUCTION(BitwiseNot);
HANDLE_INSTRUCTION(BitwiseOr);
HANDLE_INSTRUCTION(BitwiseXor);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(BlockDeclarationInstantiation);
HANDLE_INSTRUCTION(Call);
HANDLE_INSTRUCTION(CallWithArgumentArray);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(Catch);
HANDLE_INSTRUCTION(ConcatString);
HANDLE_INSTRUCTION(CopyObjectExcludingProperties);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreateLexicalEnvironment);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreateVariableEnvironment);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreatePrivateEnvironment);
HANDLE_INSTRUCTION(CreateVariable);
HANDLE_INSTRUCTION(CreateRestParams);
HANDLE_INSTRUCTION(CreateArguments);
HANDLE_INSTRUCTION(Decrement);
HANDLE_INSTRUCTION(DeleteById);
HANDLE_INSTRUCTION(DeleteByIdWithThis);
HANDLE_INSTRUCTION(DeleteByValue);
HANDLE_INSTRUCTION(DeleteByValueWithThis);
HANDLE_INSTRUCTION(DeleteVariable);
HANDLE_INSTRUCTION(Div);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(Dump);
HANDLE_INSTRUCTION(EnterObjectEnvironment);
HANDLE_INSTRUCTION(Exp);
HANDLE_INSTRUCTION(GetById);
HANDLE_INSTRUCTION(GetByIdWithThis);
HANDLE_INSTRUCTION(GetByValue);
HANDLE_INSTRUCTION(GetByValueWithThis);
HANDLE_INSTRUCTION(GetCalleeAndThisFromEnvironment);
HANDLE_INSTRUCTION(GetGlobal);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(GetImportMeta);
HANDLE_INSTRUCTION(GetIterator);
HANDLE_INSTRUCTION(GetLength);
HANDLE_INSTRUCTION(GetLengthWithThis);
HANDLE_INSTRUCTION(GetMethod);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(GetNewTarget);
HANDLE_INSTRUCTION(GetNextMethodFromIteratorRecord);
HANDLE_INSTRUCTION(GetObjectFromIteratorRecord);
HANDLE_INSTRUCTION(GetObjectPropertyIterator);
HANDLE_INSTRUCTION(GetPrivateById);
HANDLE_INSTRUCTION(GetBinding);
HANDLE_INSTRUCTION(GreaterThan);
HANDLE_INSTRUCTION(GreaterThanEquals);
HANDLE_INSTRUCTION(HasPrivateId);
HANDLE_INSTRUCTION(ImportCall);
HANDLE_INSTRUCTION(In);
HANDLE_INSTRUCTION(Increment);
HANDLE_INSTRUCTION(InitializeLexicalBinding);
HANDLE_INSTRUCTION(InitializeVariableBinding);
HANDLE_INSTRUCTION(InstanceOf);
HANDLE_INSTRUCTION(IteratorClose);
HANDLE_INSTRUCTION(IteratorNext);
HANDLE_INSTRUCTION(IteratorToArray);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveFinally);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveLexicalEnvironment);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeavePrivateEnvironment);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveUnwindContext);
HANDLE_INSTRUCTION(LeftShift);
HANDLE_INSTRUCTION(LessThan);
HANDLE_INSTRUCTION(LessThanEquals);
HANDLE_INSTRUCTION(LooselyEquals);
HANDLE_INSTRUCTION(LooselyInequals);
HANDLE_INSTRUCTION(Mod);
HANDLE_INSTRUCTION(Mul);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewArray);
HANDLE_INSTRUCTION(NewClass);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewFunction);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewObject);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewPrimitiveArray);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewRegExp);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewTypeError);
HANDLE_INSTRUCTION(Not);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(PrepareYield);
HANDLE_INSTRUCTION(PostfixDecrement);
HANDLE_INSTRUCTION(PostfixIncrement);
HANDLE_INSTRUCTION(PutById);
HANDLE_INSTRUCTION(PutByIdWithThis);
HANDLE_INSTRUCTION(PutByValue);
HANDLE_INSTRUCTION(PutByValueWithThis);
HANDLE_INSTRUCTION(PutPrivateById);
HANDLE_INSTRUCTION(ResolveSuperBase);
HANDLE_INSTRUCTION(ResolveThisBinding);
HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(RestoreScheduledJump);
HANDLE_INSTRUCTION(RightShift);
HANDLE_INSTRUCTION(SetLexicalBinding);
HANDLE_INSTRUCTION(SetVariableBinding);
HANDLE_INSTRUCTION(StrictlyEquals);
HANDLE_INSTRUCTION(StrictlyInequals);
HANDLE_INSTRUCTION(Sub);
HANDLE_INSTRUCTION(SuperCallWithArgumentArray);
HANDLE_INSTRUCTION(Throw);
HANDLE_INSTRUCTION(ThrowIfNotObject);
HANDLE_INSTRUCTION(ThrowIfNullish);
HANDLE_INSTRUCTION(ThrowIfTDZ);
HANDLE_INSTRUCTION(Typeof);
HANDLE_INSTRUCTION(TypeofVariable);
HANDLE_INSTRUCTION(UnaryMinus);
HANDLE_INSTRUCTION(UnaryPlus);
HANDLE_INSTRUCTION(UnsignedRightShift);
handle_Await: {
auto& instruction = *reinterpret_cast<Op::Await const*>(&bytecode[program_counter]);
instruction.execute_impl(*this);
return;
}
handle_Return: {
auto& instruction = *reinterpret_cast<Op::Return const*>(&bytecode[program_counter]);
instruction.execute_impl(*this);
return;
}
handle_Yield: {
auto& instruction = *reinterpret_cast<Op::Yield const*>(&bytecode[program_counter]);
instruction.execute_impl(*this);
// Note: A `yield` statement will not go through a finally statement,
// hence we need to set a flag to not do so,
// but we generate a Yield Operation in the case of returns in
// generators as well, so we need to check if it will actually
// continue or is a `return` in disguise
return;
}
}
}
}
Interpreter::ResultAndReturnRegister Interpreter::run_executable(Executable& executable, Optional<size_t> entry_point, Value initial_accumulator_value)
{
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable);
TemporaryChange restore_executable { m_current_executable, GCPtr { executable } };
TemporaryChange restore_saved_jump { m_scheduled_jump, Optional<size_t> {} };
TemporaryChange restore_realm { m_realm, GCPtr { vm().current_realm() } };
TemporaryChange restore_global_object { m_global_object, GCPtr { m_realm->global_object() } };
TemporaryChange restore_global_declarative_environment { m_global_declarative_environment, GCPtr { m_realm->global_environment().declarative_record() } };
VERIFY(!vm().execution_context_stack().is_empty());
auto& running_execution_context = vm().running_execution_context();
u32 registers_and_contants_count = executable.number_of_registers + executable.constants.size();
if (running_execution_context.registers_and_constants_and_locals.size() < registers_and_contants_count)
running_execution_context.registers_and_constants_and_locals.resize(registers_and_contants_count);
TemporaryChange restore_running_execution_context { m_running_execution_context, &running_execution_context };
TemporaryChange restore_arguments { m_arguments, running_execution_context.arguments.span() };
TemporaryChange restore_registers_and_constants_and_locals { m_registers_and_constants_and_locals, running_execution_context.registers_and_constants_and_locals.span() };
reg(Register::accumulator()) = initial_accumulator_value;
reg(Register::return_value()) = {};
running_execution_context.executable = &executable;
for (size_t i = 0; i < executable.constants.size(); ++i) {
running_execution_context.registers_and_constants_and_locals[executable.number_of_registers + i] = executable.constants[i];
}
run_bytecode(entry_point.value_or(0));
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable);
if constexpr (JS_BYTECODE_DEBUG) {
auto const& registers_and_constants_and_locals = running_execution_context.registers_and_constants_and_locals;
for (size_t i = 0; i < executable.number_of_registers; ++i) {
String value_string;
if (registers_and_constants_and_locals[i].is_empty())
value_string = "(empty)"_string;
else
value_string = registers_and_constants_and_locals[i].to_string_without_side_effects();
dbgln("[{:3}] {}", i, value_string);
}
}
auto return_value = js_undefined();
if (!reg(Register::return_value()).is_empty())
return_value = reg(Register::return_value());
else if (!reg(Register::saved_return_value()).is_empty())
return_value = reg(Register::saved_return_value());
auto exception = reg(Register::exception());
// At this point we may have already run any queued promise jobs via on_call_stack_emptied,
// in which case this is a no-op.
vm().run_queued_promise_jobs();
vm().finish_execution_generation();
if (!exception.is_empty())
return { throw_completion(exception), running_execution_context.registers_and_constants_and_locals[0] };
return { return_value, running_execution_context.registers_and_constants_and_locals[0] };
}
void Interpreter::enter_unwind_context()
{
running_execution_context().unwind_contexts.empend(
m_current_executable,
running_execution_context().lexical_environment);
running_execution_context().previously_scheduled_jumps.append(m_scheduled_jump);
m_scheduled_jump = {};
}
void Interpreter::leave_unwind_context()
{
running_execution_context().unwind_contexts.take_last();
}
void Interpreter::catch_exception(Operand dst)
{
set(dst, reg(Register::exception()));
reg(Register::exception()) = {};
auto& context = running_execution_context().unwind_contexts.last();
VERIFY(!context.handler_called);
VERIFY(context.executable == &current_executable());
context.handler_called = true;
running_execution_context().lexical_environment = context.lexical_environment;
}
void Interpreter::restore_scheduled_jump()
{
m_scheduled_jump = running_execution_context().previously_scheduled_jumps.take_last();
}
void Interpreter::leave_finally()
{
reg(Register::exception()) = {};
m_scheduled_jump = running_execution_context().previously_scheduled_jumps.take_last();
}
void Interpreter::enter_object_environment(Object& object)
{
auto& old_environment = running_execution_context().lexical_environment;
running_execution_context().saved_lexical_environments.append(old_environment);
running_execution_context().lexical_environment = new_object_environment(object, true, old_environment);
}
ThrowCompletionOr<NonnullGCPtr<Bytecode::Executable>> compile(VM& vm, ASTNode const& node, FunctionKind kind, DeprecatedFlyString const& name)
{
auto executable_result = Bytecode::Generator::generate_from_ast_node(vm, node, kind);
if (executable_result.is_error())
return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string()));
auto bytecode_executable = executable_result.release_value();
bytecode_executable->name = name;
if (Bytecode::g_dump_bytecode)
bytecode_executable->dump();
return bytecode_executable;
}
ThrowCompletionOr<NonnullGCPtr<Bytecode::Executable>> compile(VM& vm, ECMAScriptFunctionObject const& function)
{
auto const& name = function.name();
auto executable_result = Bytecode::Generator::generate_from_function(vm, function);
if (executable_result.is_error())
return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string()));
auto bytecode_executable = executable_result.release_value();
bytecode_executable->name = name;
if (Bytecode::g_dump_bytecode)
bytecode_executable->dump();
return bytecode_executable;
}
}
namespace JS::Bytecode {
ByteString Instruction::to_byte_string(Bytecode::Executable const& executable) const
{
#define __BYTECODE_OP(op) \
case Instruction::Type::op: \
return static_cast<Bytecode::Op::op const&>(*this).to_byte_string_impl(executable);
switch (type()) {
ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
default:
VERIFY_NOT_REACHED();
}
#undef __BYTECODE_OP
}
}
namespace JS::Bytecode::Op {
static void dump_object(Object& o, HashTable<Object const*>& seen, int indent = 0)
{
if (seen.contains(&o))
return;
seen.set(&o);
for (auto& it : o.shape().property_table()) {
auto value = o.get_direct(it.value.offset);
dbgln("{} {} -> {}", String::repeated(' ', indent).release_value(), it.key.to_display_string(), value);
if (value.is_object()) {
dump_object(value.as_object(), seen, indent + 2);
}
}
}
void Dump::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto value = interpreter.get(m_value);
dbgln("(DUMP) {}: {}", m_text, value);
if (value.is_object()) {
HashTable<Object const*> seen;
dump_object(value.as_object(), seen);
}
}
#define JS_DEFINE_EXECUTE_FOR_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto& vm = interpreter.vm(); \
auto lhs = interpreter.get(m_lhs); \
auto rhs = interpreter.get(m_rhs); \
interpreter.set(m_dst, TRY(op_snake_case(vm, lhs, rhs))); \
return {}; \
}
#define JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
ByteString OpTitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \
{ \
return ByteString::formatted(#OpTitleCase " {}, {}, {}", \
format_operand("dst"sv, m_dst, executable), \
format_operand("lhs"sv, m_lhs, executable), \
format_operand("rhs"sv, m_rhs, executable)); \
}
JS_ENUMERATE_COMMON_BINARY_OPS_WITHOUT_FAST_PATH(JS_DEFINE_EXECUTE_FOR_COMMON_BINARY_OP)
JS_ENUMERATE_COMMON_BINARY_OPS_WITHOUT_FAST_PATH(JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP)
JS_ENUMERATE_COMMON_BINARY_OPS_WITH_FAST_PATH(JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP)
ThrowCompletionOr<void> Add::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
if (!Checked<i32>::addition_would_overflow(lhs.as_i32(), rhs.as_i32())) {
interpreter.set(m_dst, Value(lhs.as_i32() + rhs.as_i32()));
return {};
}
}
interpreter.set(m_dst, Value(lhs.as_double() + rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(add(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> Mul::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
if (!Checked<i32>::multiplication_would_overflow(lhs.as_i32(), rhs.as_i32())) {
interpreter.set(m_dst, Value(lhs.as_i32() * rhs.as_i32()));
return {};
}
}
interpreter.set(m_dst, Value(lhs.as_double() * rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(mul(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> Sub::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
if (!Checked<i32>::subtraction_would_overflow(lhs.as_i32(), rhs.as_i32())) {
interpreter.set(m_dst, Value(lhs.as_i32() - rhs.as_i32()));
return {};
}
}
interpreter.set(m_dst, Value(lhs.as_double() - rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(sub(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> BitwiseXor::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() ^ rhs.as_i32()));
return {};
}
interpreter.set(m_dst, TRY(bitwise_xor(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> BitwiseAnd::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() & rhs.as_i32()));
return {};
}
interpreter.set(m_dst, TRY(bitwise_and(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> BitwiseOr::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() | rhs.as_i32()));
return {};
}
interpreter.set(m_dst, TRY(bitwise_or(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> UnsignedRightShift::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32;
interpreter.set(m_dst, Value(static_cast<u32>(lhs.as_i32()) >> shift_count));
return {};
}
interpreter.set(m_dst, TRY(unsigned_right_shift(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> RightShift::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32;
interpreter.set(m_dst, Value(lhs.as_i32() >> shift_count));
return {};
}
interpreter.set(m_dst, TRY(right_shift(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> LeftShift::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_int32() && rhs.is_int32()) {
auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32;
interpreter.set(m_dst, Value(lhs.as_i32() << shift_count));
return {};
}
interpreter.set(m_dst, TRY(left_shift(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> LessThan::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() < rhs.as_i32()));
return {};
}
interpreter.set(m_dst, Value(lhs.as_double() < rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(less_than(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> LessThanEquals::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() <= rhs.as_i32()));
return {};
}
interpreter.set(m_dst, Value(lhs.as_double() <= rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(less_than_equals(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> GreaterThan::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() > rhs.as_i32()));
return {};
}
interpreter.set(m_dst, Value(lhs.as_double() > rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(greater_than(vm, lhs, rhs)));
return {};
}
ThrowCompletionOr<void> GreaterThanEquals::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const lhs = interpreter.get(m_lhs);
auto const rhs = interpreter.get(m_rhs);
if (lhs.is_number() && rhs.is_number()) {
if (lhs.is_int32() && rhs.is_int32()) {
interpreter.set(m_dst, Value(lhs.as_i32() >= rhs.as_i32()));
return {};
}
interpreter.set(m_dst, Value(lhs.as_double() >= rhs.as_double()));
return {};
}
interpreter.set(m_dst, TRY(greater_than_equals(vm, lhs, rhs)));
return {};
}
static ThrowCompletionOr<Value> not_(VM&, Value value)
{
return Value(!value.to_boolean());
}
static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
{
return PrimitiveString::create(vm, value.typeof());
}
#define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto& vm = interpreter.vm(); \
interpreter.set(dst(), TRY(op_snake_case(vm, interpreter.get(src())))); \
return {}; \
} \
ByteString OpTitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \
{ \
return ByteString::formatted(#OpTitleCase " {}, {}", \
format_operand("dst"sv, dst(), executable), \
format_operand("src"sv, src(), executable)); \
}
JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
void NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto array = MUST(Array::create(interpreter.realm(), 0));
for (size_t i = 0; i < m_element_count; i++) {
array->indexed_properties().put(i, interpreter.get(m_elements[i]), default_attributes);
}
interpreter.set(dst(), array);
}
void NewPrimitiveArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto array = MUST(Array::create(interpreter.realm(), 0));
for (size_t i = 0; i < m_element_count; i++)
array->indexed_properties().put(i, m_elements[i], default_attributes);
interpreter.set(dst(), array);
}
void AddPrivateName::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto const& name = interpreter.current_executable().get_identifier(m_name);
interpreter.vm().running_execution_context().private_environment->add_private_name(name);
}
ThrowCompletionOr<void> ArrayAppend::execute_impl(Bytecode::Interpreter& interpreter) const
{
return append(interpreter.vm(), interpreter.get(dst()), interpreter.get(src()), m_is_spread);
}
ThrowCompletionOr<void> ImportCall::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto specifier = interpreter.get(m_specifier);
auto options_value = interpreter.get(m_options);
interpreter.set(dst(), TRY(perform_import_call(vm, specifier, options_value)));
return {};
}
ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), TRY(iterator_to_array(interpreter.vm(), interpreter.get(iterator()))));
return {};
}
void NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& realm = *vm.current_realm();
interpreter.set(dst(), Object::create(realm, realm.intrinsics().object_prototype()));
}
void NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(),
new_regexp(
interpreter.vm(),
interpreter.current_executable().regex_table->get(m_regex_index),
interpreter.current_executable().get_string(m_source_index),
interpreter.current_executable().get_string(m_flags_index)));
}
#define JS_DEFINE_NEW_BUILTIN_ERROR_OP(ErrorName) \
void New##ErrorName::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto& vm = interpreter.vm(); \
auto& realm = *vm.current_realm(); \
interpreter.set(dst(), ErrorName::create(realm, interpreter.current_executable().get_string(m_error_string))); \
} \
ByteString New##ErrorName::to_byte_string_impl(Bytecode::Executable const& executable) const \
{ \
return ByteString::formatted("New" #ErrorName " {}, {}", \
format_operand("dst"sv, m_dst, executable), \
executable.string_table->get(m_error_string)); \
}
JS_ENUMERATE_NEW_BUILTIN_ERROR_OPS(JS_DEFINE_NEW_BUILTIN_ERROR_OP)
ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& realm = *vm.current_realm();
auto from_object = interpreter.get(m_from_object);
auto to_object = Object::create(realm, realm.intrinsics().object_prototype());
HashTable<PropertyKey> excluded_names;
for (size_t i = 0; i < m_excluded_names_count; ++i) {
excluded_names.set(TRY(interpreter.get(m_excluded_names[i]).to_property_key(vm)));
}
TRY(to_object->copy_data_properties(vm, from_object, excluded_names));
interpreter.set(dst(), to_object);
return {};
}
ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto string = TRY(interpreter.get(src()).to_primitive_string(vm));
interpreter.set(dst(), PrimitiveString::create(vm, interpreter.get(dst()).as_string(), string));
return {};
}
ThrowCompletionOr<void> GetBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& executable = interpreter.current_executable();
if (m_cache.is_valid()) {
auto const* environment = interpreter.running_execution_context().lexical_environment.ptr();
for (size_t i = 0; i < m_cache.hops; ++i)
environment = environment->outer_environment();
if (!environment->is_permanently_screwed_by_eval()) {
interpreter.set(dst(), TRY(static_cast<DeclarativeEnvironment const&>(*environment).get_binding_value_direct(vm, m_cache.index)));
return {};
}
m_cache = {};
}
auto reference = TRY(vm.resolve_binding(executable.get_identifier(m_identifier)));
if (reference.environment_coordinate().has_value())
m_cache = reference.environment_coordinate().value();
interpreter.set(dst(), TRY(reference.get_value(vm)));
return {};
}
ThrowCompletionOr<void> GetCalleeAndThisFromEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto callee_and_this = TRY(get_callee_and_this_from_environment(
interpreter,
interpreter.current_executable().get_identifier(m_identifier),
m_cache));
interpreter.set(m_callee, callee_and_this.callee);
interpreter.set(m_this_value, callee_and_this.this_value);
return {};
}
ThrowCompletionOr<void> GetGlobal::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), TRY(get_global(interpreter, m_identifier, interpreter.current_executable().global_variable_caches[m_cache_index])));
return {};
}
ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const& string = interpreter.current_executable().get_identifier(m_identifier);
auto reference = TRY(vm.resolve_binding(string));
interpreter.set(dst(), Value(TRY(reference.delete_(vm))));
return {};
}
void CreateLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto make_and_swap_envs = [&](auto& old_environment) {
auto declarative_environment = new_declarative_environment(*old_environment).ptr();
declarative_environment->ensure_capacity(m_capacity);
GCPtr<Environment> environment = declarative_environment;
swap(old_environment, environment);
return environment;
};
auto& running_execution_context = interpreter.running_execution_context();
running_execution_context.saved_lexical_environments.append(make_and_swap_envs(running_execution_context.lexical_environment));
}
void CreatePrivateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& running_execution_context = interpreter.vm().running_execution_context();
auto outer_private_environment = running_execution_context.private_environment;
running_execution_context.private_environment = new_private_environment(interpreter.vm(), outer_private_environment);
}
void CreateVariableEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& running_execution_context = interpreter.running_execution_context();
auto var_environment = new_declarative_environment(*running_execution_context.lexical_environment);
var_environment->ensure_capacity(m_capacity);
running_execution_context.variable_environment = var_environment;
running_execution_context.lexical_environment = var_environment;
}
ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto object = TRY(interpreter.get(m_object).to_object(interpreter.vm()));
interpreter.enter_object_environment(*object);
return {};
}
void Catch::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.catch_exception(dst());
}
void LeaveFinally::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.leave_finally();
}
void RestoreScheduledJump::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.restore_scheduled_jump();
}
ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto const& name = interpreter.current_executable().get_identifier(m_identifier);
return create_variable(interpreter.vm(), name, m_mode, m_is_global, m_is_immutable, m_is_strict);
}
ThrowCompletionOr<void> CreateRestParams::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto const& arguments = interpreter.running_execution_context().arguments;
auto arguments_count = interpreter.running_execution_context().passed_argument_count;
auto array = MUST(Array::create(interpreter.realm(), 0));
for (size_t rest_index = m_rest_index; rest_index < arguments_count; ++rest_index)
array->indexed_properties().append(arguments[rest_index]);
interpreter.set(m_dst, array);
return {};
}
ThrowCompletionOr<void> CreateArguments::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto const& function = interpreter.running_execution_context().function;
auto const& arguments = interpreter.running_execution_context().arguments;
auto const& environment = interpreter.running_execution_context().lexical_environment;
auto passed_arguments = ReadonlySpan<Value> { arguments.data(), interpreter.running_execution_context().passed_argument_count };
Object* arguments_object;
if (m_kind == Kind::Mapped) {
arguments_object = create_mapped_arguments_object(interpreter.vm(), *function, function->formal_parameters(), passed_arguments, *environment);
} else {
arguments_object = create_unmapped_arguments_object(interpreter.vm(), passed_arguments);
}
if (m_dst.has_value()) {
interpreter.set(*m_dst, arguments_object);
return {};
}
if (m_is_immutable) {
MUST(environment->create_immutable_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), false));
} else {
MUST(environment->create_mutable_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), false));
}
MUST(environment->initialize_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), arguments_object, Environment::InitializeBindingHint::Normal));
return {};
}
template<EnvironmentMode environment_mode, BindingInitializationMode initialization_mode>
static ThrowCompletionOr<void> initialize_or_set_binding(Interpreter& interpreter, IdentifierTableIndex identifier_index, Value value, EnvironmentCoordinate& cache)
{
auto& vm = interpreter.vm();
auto* environment = environment_mode == EnvironmentMode::Lexical
? interpreter.running_execution_context().lexical_environment.ptr()
: interpreter.running_execution_context().variable_environment.ptr();
if (cache.is_valid()) {
for (size_t i = 0; i < cache.hops; ++i)
environment = environment->outer_environment();
if (!environment->is_permanently_screwed_by_eval()) {
if constexpr (initialization_mode == BindingInitializationMode::Initialize) {
TRY(static_cast<DeclarativeEnvironment&>(*environment).initialize_binding_direct(vm, cache.index, value, Environment::InitializeBindingHint::Normal));
} else {
TRY(static_cast<DeclarativeEnvironment&>(*environment).set_mutable_binding_direct(vm, cache.index, value, vm.in_strict_mode()));
}
return {};
}
cache = {};
}
auto reference = TRY(vm.resolve_binding(interpreter.current_executable().get_identifier(identifier_index), environment));
if (reference.environment_coordinate().has_value())
cache = reference.environment_coordinate().value();
if constexpr (initialization_mode == BindingInitializationMode::Initialize) {
TRY(reference.initialize_referenced_binding(vm, value));
} else if (initialization_mode == BindingInitializationMode::Set) {
TRY(reference.put_value(vm, value));
}
return {};
}
ThrowCompletionOr<void> InitializeLexicalBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
return initialize_or_set_binding<EnvironmentMode::Lexical, BindingInitializationMode::Initialize>(interpreter, m_identifier, interpreter.get(m_src), m_cache);
}
ThrowCompletionOr<void> InitializeVariableBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
return initialize_or_set_binding<EnvironmentMode::Var, BindingInitializationMode::Initialize>(interpreter, m_identifier, interpreter.get(m_src), m_cache);
}
ThrowCompletionOr<void> SetLexicalBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
return initialize_or_set_binding<EnvironmentMode::Lexical, BindingInitializationMode::Set>(interpreter, m_identifier, interpreter.get(m_src), m_cache);
}
ThrowCompletionOr<void> SetVariableBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
return initialize_or_set_binding<EnvironmentMode::Var, BindingInitializationMode::Set>(interpreter, m_identifier, interpreter.get(m_src), m_cache);
}
ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier);
auto const& property_identifier = interpreter.current_executable().get_identifier(m_property);
auto base_value = interpreter.get(base());
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
interpreter.set(dst(), TRY(get_by_id(interpreter.vm(), base_identifier, property_identifier, base_value, base_value, cache)));
return {};
}
ThrowCompletionOr<void> GetByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_value = interpreter.get(m_base);
auto this_value = interpreter.get(m_this_value);
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
interpreter.set(dst(), TRY(get_by_id(interpreter.vm(), {}, interpreter.current_executable().get_identifier(m_property), base_value, this_value, cache)));
return {};
}
ThrowCompletionOr<void> GetLength::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier);
auto base_value = interpreter.get(base());
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
interpreter.set(dst(), TRY(get_by_id<GetByIdMode::Length>(interpreter.vm(), base_identifier, interpreter.vm().names.length.as_string(), base_value, base_value, cache)));
return {};
}
ThrowCompletionOr<void> GetLengthWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_value = interpreter.get(m_base);
auto this_value = interpreter.get(m_this_value);
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
interpreter.set(dst(), TRY(get_by_id<GetByIdMode::Length>(interpreter.vm(), {}, interpreter.vm().names.length.as_string(), base_value, this_value, cache)));
return {};
}
ThrowCompletionOr<void> GetPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto const& name = interpreter.current_executable().get_identifier(m_property);
auto base_value = interpreter.get(m_base);
auto private_reference = make_private_reference(vm, base_value, name);
interpreter.set(dst(), TRY(private_reference.get_value(vm)));
return {};
}
ThrowCompletionOr<void> HasPrivateId::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto base = interpreter.get(m_base);
if (!base.is_object())
return vm.throw_completion<TypeError>(ErrorType::InOperatorWithObject);
auto private_environment = interpreter.running_execution_context().private_environment;
VERIFY(private_environment);
auto private_name = private_environment->resolve_private_identifier(interpreter.current_executable().get_identifier(m_property));
interpreter.set(dst(), Value(base.as_object().private_element_find(private_name) != nullptr));
return {};
}
ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
auto base = interpreter.get(m_base);
auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier);
PropertyKey name = interpreter.current_executable().get_identifier(m_property);
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
TRY(put_by_property_key(vm, base, base, value, base_identifier, name, m_kind, &cache));
return {};
}
ThrowCompletionOr<void> PutByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
auto base = interpreter.get(m_base);
PropertyKey name = interpreter.current_executable().get_identifier(m_property);
auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index];
TRY(put_by_property_key(vm, base, interpreter.get(m_this_value), value, {}, name, m_kind, &cache));
return {};
}
ThrowCompletionOr<void> PutPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
auto object = TRY(interpreter.get(m_base).to_object(vm));
auto name = interpreter.current_executable().get_identifier(m_property);
auto private_reference = make_private_reference(vm, object, name);
TRY(private_reference.put_value(vm, value));
return {};
}
ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_value = interpreter.get(m_base);
interpreter.set(dst(), TRY(Bytecode::delete_by_id(interpreter, base_value, m_property)));
return {};
}
ThrowCompletionOr<void> DeleteByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto base_value = interpreter.get(m_base);
auto const& identifier = interpreter.current_executable().get_identifier(m_property);
bool strict = vm.in_strict_mode();
auto reference = Reference { base_value, identifier, interpreter.get(m_this_value), strict };
interpreter.set(dst(), Value(TRY(reference.delete_(vm))));
return {};
}
ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& cached_this_value = interpreter.reg(Register::this_value());
if (cached_this_value.is_empty()) {
// OPTIMIZATION: Because the value of 'this' cannot be reassigned during a function execution, it's
// resolved once and then saved for subsequent use.
auto& vm = interpreter.vm();
cached_this_value = TRY(vm.resolve_this_binding());
}
interpreter.set(dst(), cached_this_value);
return {};
}
// https://tc39.es/ecma262/#sec-makesuperpropertyreference
ThrowCompletionOr<void> ResolveSuperBase::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
// 1. Let env be GetThisEnvironment().
auto& env = verify_cast<FunctionEnvironment>(*get_this_environment(vm));
// 2. Assert: env.HasSuperBinding() is true.
VERIFY(env.has_super_binding());
// 3. Let baseValue be ? env.GetSuperBase().
interpreter.set(dst(), TRY(env.get_super_base()));
return {};
}
void GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), interpreter.vm().get_new_target());
}
void GetImportMeta::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), interpreter.vm().get_import_meta());
}
static ThrowCompletionOr<Value> dispatch_builtin_call(Bytecode::Interpreter& interpreter, Bytecode::Builtin builtin, ReadonlySpan<Operand> arguments)
{
switch (builtin) {
case Builtin::MathAbs:
return TRY(MathObject::abs_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathLog:
return TRY(MathObject::log_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathPow:
return TRY(MathObject::pow_impl(interpreter.vm(), interpreter.get(arguments[0]), interpreter.get(arguments[1])));
case Builtin::MathExp:
return TRY(MathObject::exp_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathCeil:
return TRY(MathObject::ceil_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathFloor:
return TRY(MathObject::floor_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathRound:
return TRY(MathObject::round_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Builtin::MathSqrt:
return TRY(MathObject::sqrt_impl(interpreter.vm(), interpreter.get(arguments[0])));
case Bytecode::Builtin::__Count:
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto callee = interpreter.get(m_callee);
TRY(throw_if_needed_for_call(interpreter, callee, call_type(), expression_string()));
if (m_builtin.has_value()
&& m_argument_count == Bytecode::builtin_argument_count(m_builtin.value())
&& callee.is_object()
&& interpreter.realm().get_builtin_value(m_builtin.value()) == &callee.as_object()) {
interpreter.set(dst(), TRY(dispatch_builtin_call(interpreter, m_builtin.value(), { m_arguments, m_argument_count })));
return {};
}
Vector<Value> argument_values;
argument_values.ensure_capacity(m_argument_count);
for (size_t i = 0; i < m_argument_count; ++i)
argument_values.unchecked_append(interpreter.get(m_arguments[i]));
interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), call_type(), callee, argument_values)));
return {};
}
ThrowCompletionOr<void> CallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto callee = interpreter.get(m_callee);
TRY(throw_if_needed_for_call(interpreter, callee, call_type(), expression_string()));
auto argument_values = argument_list_evaluation(interpreter.vm(), interpreter.get(arguments()));
interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), call_type(), callee, move(argument_values))));
return {};
}
// 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
ThrowCompletionOr<void> SuperCallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), TRY(super_call_with_argument_array(interpreter.vm(), interpreter.get(arguments()), m_is_synthetic)));
return {};
}
void NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.set(dst(), new_function(vm, m_function_node, m_lhs_name, m_home_object));
}
void Return::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (m_value.has_value())
interpreter.do_return(interpreter.get(*m_value));
else
interpreter.do_return(js_undefined());
}
ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = interpreter.get(dst());
// OPTIMIZATION: Fast path for Int32 values.
if (old_value.is_int32()) {
auto integer_value = old_value.as_i32();
if (integer_value != NumericLimits<i32>::max()) [[likely]] {
interpreter.set(dst(), Value { integer_value + 1 });
return {};
}
}
old_value = TRY(old_value.to_numeric(vm));
if (old_value.is_number())
interpreter.set(dst(), Value(old_value.as_double() + 1));
else
interpreter.set(dst(), BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })));
return {};
}
ThrowCompletionOr<void> PostfixIncrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = interpreter.get(m_src);
// OPTIMIZATION: Fast path for Int32 values.
if (old_value.is_int32()) {
auto integer_value = old_value.as_i32();
if (integer_value != NumericLimits<i32>::max()) [[likely]] {
interpreter.set(m_dst, old_value);
interpreter.set(m_src, Value { integer_value + 1 });
return {};
}
}
old_value = TRY(old_value.to_numeric(vm));
interpreter.set(m_dst, old_value);
if (old_value.is_number())
interpreter.set(m_src, Value(old_value.as_double() + 1));
else
interpreter.set(m_src, BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })));
return {};
}
ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = interpreter.get(dst());
old_value = TRY(old_value.to_numeric(vm));
if (old_value.is_number())
interpreter.set(dst(), Value(old_value.as_double() - 1));
else
interpreter.set(dst(), BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })));
return {};
}
ThrowCompletionOr<void> PostfixDecrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_value = interpreter.get(m_src);
old_value = TRY(old_value.to_numeric(vm));
interpreter.set(m_dst, old_value);
if (old_value.is_number())
interpreter.set(m_src, Value(old_value.as_double() - 1));
else
interpreter.set(m_src, BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })));
return {};
}
ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
{
return throw_completion(interpreter.get(src()));
}
ThrowCompletionOr<void> ThrowIfNotObject::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto src = interpreter.get(m_src);
if (!src.is_object())
return vm.throw_completion<TypeError>(ErrorType::NotAnObject, src.to_string_without_side_effects());
return {};
}
ThrowCompletionOr<void> ThrowIfNullish::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
if (value.is_nullish())
return vm.throw_completion<TypeError>(ErrorType::NotObjectCoercible, value.to_string_without_side_effects());
return {};
}
ThrowCompletionOr<void> ThrowIfTDZ::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
if (value.is_empty())
return vm.throw_completion<ReferenceError>(ErrorType::BindingNotInitialized, value.to_string_without_side_effects());
return {};
}
void LeaveLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& running_execution_context = interpreter.running_execution_context();
running_execution_context.lexical_environment = running_execution_context.saved_lexical_environments.take_last();
}
void LeavePrivateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& running_execution_context = interpreter.vm().running_execution_context();
running_execution_context.private_environment = running_execution_context.private_environment->outer_environment();
}
void LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.leave_unwind_context();
}
void Yield::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto yielded_value = interpreter.get(m_value).value_or(js_undefined());
interpreter.do_return(
interpreter.do_yield(yielded_value, m_continuation_label));
}
void PrepareYield::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto value = interpreter.get(m_value).value_or(js_undefined());
interpreter.set(m_dest, interpreter.do_yield(value, {}));
}
void Await::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto yielded_value = interpreter.get(m_argument).value_or(js_undefined());
auto object = Object::create(interpreter.realm(), nullptr);
object->define_direct_property("result", yielded_value, JS::default_attributes);
// FIXME: If we get a pointer, which is not accurately representable as a double
// will cause this to explode
object->define_direct_property("continuation", Value(m_continuation_label.address()), JS::default_attributes);
object->define_direct_property("isAwait", Value(true), JS::default_attributes);
interpreter.do_return(object);
}
ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier);
interpreter.set(dst(), TRY(get_by_value(interpreter.vm(), base_identifier, interpreter.get(m_base), interpreter.get(m_property))));
return {};
}
ThrowCompletionOr<void> GetByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto property_key_value = interpreter.get(m_property);
auto object = TRY(interpreter.get(m_base).to_object(vm));
auto property_key = TRY(property_key_value.to_property_key(vm));
interpreter.set(dst(), TRY(object->internal_get(property_key, interpreter.get(m_this_value))));
return {};
}
ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier);
TRY(put_by_value(vm, interpreter.get(m_base), base_identifier, interpreter.get(m_property), value, m_kind));
return {};
}
ThrowCompletionOr<void> PutByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto value = interpreter.get(m_src);
auto base = interpreter.get(m_base);
auto property_key = m_kind != PropertyKind::Spread ? TRY(interpreter.get(m_property).to_property_key(vm)) : PropertyKey {};
TRY(put_by_property_key(vm, base, interpreter.get(m_this_value), value, {}, property_key, m_kind));
return {};
}
ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto base_value = interpreter.get(m_base);
auto property_key_value = interpreter.get(m_property);
interpreter.set(dst(), TRY(delete_by_value(interpreter, base_value, property_key_value)));
return {};
}
ThrowCompletionOr<void> DeleteByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto property_key_value = interpreter.get(m_property);
auto base_value = interpreter.get(m_base);
auto this_value = interpreter.get(m_this_value);
interpreter.set(dst(), TRY(delete_by_value_with_this(interpreter, base_value, property_key_value, this_value)));
return {};
}
ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.set(dst(), TRY(get_iterator(vm, interpreter.get(iterable()), m_hint)));
return {};
}
ThrowCompletionOr<void> GetObjectFromIteratorRecord::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object());
interpreter.set(m_object, iterator_record.iterator);
return {};
}
ThrowCompletionOr<void> GetNextMethodFromIteratorRecord::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object());
interpreter.set(m_next_method, iterator_record.next_method);
return {};
}
ThrowCompletionOr<void> GetMethod::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto identifier = interpreter.current_executable().get_identifier(m_property);
auto method = TRY(interpreter.get(m_object).get_method(vm, identifier));
interpreter.set(dst(), method ?: js_undefined());
return {};
}
ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.set(dst(), TRY(get_object_property_iterator(interpreter.vm(), interpreter.get(object()))));
return {};
}
ThrowCompletionOr<void> IteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& iterator = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object());
// FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!)
TRY(iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value }));
return {};
}
ThrowCompletionOr<void> AsyncIteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& iterator = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object());
// FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!)
TRY(async_iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value }));
return {};
}
ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object());
interpreter.set(dst(), TRY(iterator_next(vm, iterator_record)));
return {};
}
ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
{
Value super_class;
if (m_super_class.has_value())
super_class = interpreter.get(m_super_class.value());
Vector<Value> element_keys;
for (size_t i = 0; i < m_element_keys_count; ++i) {
Value element_key;
if (m_element_keys[i].has_value())
element_key = interpreter.get(m_element_keys[i].value());
element_keys.append(element_key);
}
interpreter.set(dst(), TRY(new_class(interpreter.vm(), super_class, m_class_expression, m_lhs_name, element_keys)));
return {};
}
// 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.set(dst(), TRY(typeof_variable(vm, interpreter.current_executable().get_identifier(m_identifier))));
return {};
}
void BlockDeclarationInstantiation::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
auto old_environment = interpreter.running_execution_context().lexical_environment;
auto& running_execution_context = interpreter.running_execution_context();
running_execution_context.saved_lexical_environments.append(old_environment);
running_execution_context.lexical_environment = new_declarative_environment(*old_environment);
m_scope_node.block_declaration_instantiation(vm, running_execution_context.lexical_environment);
}
ByteString Mov::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Mov {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("src"sv, m_src, executable));
}
ByteString NewArray::to_byte_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
builder.appendff("NewArray {}", format_operand("dst"sv, dst(), executable));
if (m_element_count != 0) {
builder.appendff(", {}", format_operand_list("args"sv, { m_elements, m_element_count }, executable));
}
return builder.to_byte_string();
}
ByteString NewPrimitiveArray::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("NewPrimitiveArray {}, {}"sv,
format_operand("dst"sv, dst(), executable),
format_value_list("elements"sv, elements()));
}
ByteString AddPrivateName::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("AddPrivateName {}"sv, executable.identifier_table->get(m_name));
}
ByteString ArrayAppend::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Append {}, {}{}",
format_operand("dst"sv, dst(), executable),
format_operand("src"sv, src(), executable),
m_is_spread ? " **"sv : ""sv);
}
ByteString IteratorToArray::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("IteratorToArray {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("iterator"sv, iterator(), executable));
}
ByteString NewObject::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("NewObject {}", format_operand("dst"sv, dst(), executable));
}
ByteString NewRegExp::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("NewRegExp {}, source:{} (\"{}\") flags:{} (\"{}\")",
format_operand("dst"sv, dst(), executable),
m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
}
ByteString CopyObjectExcludingProperties::to_byte_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
builder.appendff("CopyObjectExcludingProperties {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("from"sv, m_from_object, executable));
if (m_excluded_names_count != 0) {
builder.append(" excluding:["sv);
for (size_t i = 0; i < m_excluded_names_count; ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(format_operand("#"sv, m_excluded_names[i], executable));
}
builder.append(']');
}
return builder.to_byte_string();
}
ByteString ConcatString::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ConcatString {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("src"sv, src(), executable));
}
ByteString GetCalleeAndThisFromEnvironment::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetCalleeAndThisFromEnvironment {}, {} <- {}",
format_operand("callee"sv, m_callee, executable),
format_operand("this"sv, m_this_value, executable),
executable.identifier_table->get(m_identifier));
}
ByteString GetBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetBinding {}, {}",
format_operand("dst"sv, dst(), executable),
executable.identifier_table->get(m_identifier));
}
ByteString GetGlobal::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetGlobal {}, {}", format_operand("dst"sv, dst(), executable),
executable.identifier_table->get(m_identifier));
}
ByteString DeleteVariable::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("DeleteVariable {}", executable.identifier_table->get(m_identifier));
}
ByteString CreateLexicalEnvironment::to_byte_string_impl(Bytecode::Executable const&) const
{
return "CreateLexicalEnvironment"sv;
}
ByteString CreatePrivateEnvironment::to_byte_string_impl(Bytecode::Executable const&) const
{
return "CreatePrivateEnvironment"sv;
}
ByteString CreateVariableEnvironment::to_byte_string_impl(Bytecode::Executable const&) const
{
return "CreateVariableEnvironment"sv;
}
ByteString CreateVariable::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
return ByteString::formatted("CreateVariable env:{} immutable:{} global:{} {}", mode_string, m_is_immutable, m_is_global, executable.identifier_table->get(m_identifier));
}
ByteString CreateRestParams::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("CreateRestParams {}, rest_index:{}", format_operand("dst"sv, m_dst, executable), m_rest_index);
}
ByteString CreateArguments::to_byte_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
builder.appendff("CreateArguments");
if (m_dst.has_value())
builder.appendff(" {}", format_operand("dst"sv, *m_dst, executable));
builder.appendff(" {} immutable:{}", m_kind == Kind::Mapped ? "mapped"sv : "unmapped"sv, m_is_immutable);
return builder.to_byte_string();
}
ByteString EnterObjectEnvironment::to_byte_string_impl(Executable const& executable) const
{
return ByteString::formatted("EnterObjectEnvironment {}",
format_operand("object"sv, m_object, executable));
}
ByteString InitializeLexicalBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("InitializeLexicalBinding {}, {}",
executable.identifier_table->get(m_identifier),
format_operand("src"sv, src(), executable));
}
ByteString InitializeVariableBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("InitializeVariableBinding {}, {}",
executable.identifier_table->get(m_identifier),
format_operand("src"sv, src(), executable));
}
ByteString SetLexicalBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("SetLexicalBinding {}, {}",
executable.identifier_table->get(m_identifier),
format_operand("src"sv, src(), executable));
}
ByteString SetVariableBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("SetVariableBinding {}, {}",
executable.identifier_table->get(m_identifier),
format_operand("src"sv, src(), executable));
}
ByteString GetArgument::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetArgument {}, {}", index(), format_operand("dst"sv, dst(), executable));
}
ByteString SetArgument::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("SetArgument {}, {}", index(), format_operand("src"sv, src(), executable));
}
static StringView property_kind_to_string(PropertyKind kind)
{
switch (kind) {
case PropertyKind::Getter:
return "getter"sv;
case PropertyKind::Setter:
return "setter"sv;
case PropertyKind::KeyValue:
return "key-value"sv;
case PropertyKind::DirectKeyValue:
return "direct-key-value"sv;
case PropertyKind::Spread:
return "spread"sv;
case PropertyKind::ProtoSetter:
return "proto-setter"sv;
}
VERIFY_NOT_REACHED();
}
ByteString PutById::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto kind = property_kind_to_string(m_kind);
return ByteString::formatted("PutById {}, {}, {}, kind:{}",
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property),
format_operand("src"sv, m_src, executable),
kind);
}
ByteString PutByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto kind = property_kind_to_string(m_kind);
return ByteString::formatted("PutByIdWithThis {}, {}, {}, {}, kind:{}",
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property),
format_operand("src"sv, m_src, executable),
format_operand("this"sv, m_this_value, executable),
kind);
}
ByteString PutPrivateById::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto kind = property_kind_to_string(m_kind);
return ByteString::formatted(
"PutPrivateById {}, {}, {}, kind:{} ",
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property),
format_operand("src"sv, m_src, executable),
kind);
}
ByteString GetById::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetById {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property));
}
ByteString GetByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetByIdWithThis {}, {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property),
format_operand("this"sv, m_this_value, executable));
}
ByteString GetLength::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetLength {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable));
}
ByteString GetLengthWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetLengthWithThis {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
format_operand("this"sv, m_this_value, executable));
}
ByteString GetPrivateById::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetPrivateById {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property));
}
ByteString HasPrivateId::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("HasPrivateId {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property));
}
ByteString DeleteById::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("DeleteById {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property));
}
ByteString DeleteByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("DeleteByIdWithThis {}, {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
executable.identifier_table->get(m_property),
format_operand("this"sv, m_this_value, executable));
}
ByteString Jump::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("Jump {}", m_target);
}
ByteString JumpIf::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("JumpIf {}, \033[32mtrue\033[0m:{} \033[32mfalse\033[0m:{}",
format_operand("condition"sv, m_condition, executable),
m_true_target,
m_false_target);
}
ByteString JumpTrue::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("JumpTrue {}, {}",
format_operand("condition"sv, m_condition, executable),
m_target);
}
ByteString JumpFalse::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("JumpFalse {}, {}",
format_operand("condition"sv, m_condition, executable),
m_target);
}
ByteString JumpNullish::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("JumpNullish {}, null:{} nonnull:{}",
format_operand("condition"sv, m_condition, executable),
m_true_target,
m_false_target);
}
#define HANDLE_COMPARISON_OP(op_TitleCase, op_snake_case, numeric_operator) \
ByteString Jump##op_TitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \
{ \
return ByteString::formatted("Jump" #op_TitleCase " {}, {}, true:{}, false:{}", \
format_operand("lhs"sv, m_lhs, executable), \
format_operand("rhs"sv, m_rhs, executable), \
m_true_target, \
m_false_target); \
}
JS_ENUMERATE_COMPARISON_OPS(HANDLE_COMPARISON_OP)
ByteString JumpUndefined::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("JumpUndefined {}, undefined:{} defined:{}",
format_operand("condition"sv, m_condition, executable),
m_true_target,
m_false_target);
}
static StringView call_type_to_string(CallType type)
{
switch (type) {
case CallType::Call:
return ""sv;
case CallType::Construct:
return " (Construct)"sv;
case CallType::DirectEval:
return " (DirectEval)"sv;
}
VERIFY_NOT_REACHED();
}
ByteString Call::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto type = call_type_to_string(m_type);
StringBuilder builder;
builder.appendff("Call{} {}, {}, {}, "sv,
type,
format_operand("dst"sv, m_dst, executable),
format_operand("callee"sv, m_callee, executable),
format_operand("this"sv, m_this_value, executable));
builder.append(format_operand_list("args"sv, { m_arguments, m_argument_count }, executable));
if (m_builtin.has_value()) {
builder.appendff(", (builtin:{})", m_builtin.value());
}
if (m_expression_string.has_value()) {
builder.appendff(", `{}`", executable.get_string(m_expression_string.value()));
}
return builder.to_byte_string();
}
ByteString CallWithArgumentArray::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto type = call_type_to_string(m_type);
StringBuilder builder;
builder.appendff("CallWithArgumentArray{} {}, {}, {}, {}",
type,
format_operand("dst"sv, m_dst, executable),
format_operand("callee"sv, m_callee, executable),
format_operand("this"sv, m_this_value, executable),
format_operand("arguments"sv, m_arguments, executable));
if (m_expression_string.has_value())
builder.appendff(" ({})", executable.get_string(m_expression_string.value()));
return builder.to_byte_string();
}
ByteString SuperCallWithArgumentArray::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("SuperCallWithArgumentArray {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("arguments"sv, m_arguments, executable));
}
ByteString NewFunction::to_byte_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
builder.appendff("NewFunction {}",
format_operand("dst"sv, m_dst, executable));
if (m_function_node.has_name())
builder.appendff(" name:{}"sv, m_function_node.name());
if (m_lhs_name.has_value())
builder.appendff(" lhs_name:{}"sv, executable.get_identifier(m_lhs_name.value()));
if (m_home_object.has_value())
builder.appendff(", {}"sv, format_operand("home_object"sv, m_home_object.value(), executable));
return builder.to_byte_string();
}
ByteString NewClass::to_byte_string_impl(Bytecode::Executable const& executable) const
{
StringBuilder builder;
auto name = m_class_expression.name();
builder.appendff("NewClass {}",
format_operand("dst"sv, m_dst, executable));
if (m_super_class.has_value())
builder.appendff(", {}", format_operand("super_class"sv, *m_super_class, executable));
if (!name.is_empty())
builder.appendff(", {}", name);
if (m_lhs_name.has_value())
builder.appendff(", lhs_name:{}"sv, executable.get_identifier(m_lhs_name.value()));
return builder.to_byte_string();
}
ByteString Return::to_byte_string_impl(Bytecode::Executable const& executable) const
{
if (m_value.has_value())
return ByteString::formatted("Return {}", format_operand("value"sv, m_value.value(), executable));
return "Return";
}
ByteString Increment::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Increment {}", format_operand("dst"sv, m_dst, executable));
}
ByteString PostfixIncrement::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("PostfixIncrement {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("src"sv, m_src, executable));
}
ByteString Decrement::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Decrement {}", format_operand("dst"sv, m_dst, executable));
}
ByteString PostfixDecrement::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("PostfixDecrement {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("src"sv, m_src, executable));
}
ByteString Throw::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Throw {}",
format_operand("src"sv, m_src, executable));
}
ByteString ThrowIfNotObject::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ThrowIfNotObject {}",
format_operand("src"sv, m_src, executable));
}
ByteString ThrowIfNullish::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ThrowIfNullish {}",
format_operand("src"sv, m_src, executable));
}
ByteString ThrowIfTDZ::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ThrowIfTDZ {}",
format_operand("src"sv, m_src, executable));
}
ByteString EnterUnwindContext::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("EnterUnwindContext entry:{}", m_entry_point);
}
ByteString ScheduleJump::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("ScheduleJump {}", m_target);
}
ByteString LeaveLexicalEnvironment::to_byte_string_impl(Bytecode::Executable const&) const
{
return "LeaveLexicalEnvironment"sv;
}
ByteString LeavePrivateEnvironment::to_byte_string_impl(Bytecode::Executable const&) const
{
return "LeavePrivateEnvironment"sv;
}
ByteString LeaveUnwindContext::to_byte_string_impl(Bytecode::Executable const&) const
{
return "LeaveUnwindContext";
}
ByteString ContinuePendingUnwind::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
}
ByteString Yield::to_byte_string_impl(Bytecode::Executable const& executable) const
{
if (m_continuation_label.has_value()) {
return ByteString::formatted("Yield continuation:{}, {}",
m_continuation_label.value(),
format_operand("value"sv, m_value, executable));
}
return ByteString::formatted("Yield return {}",
format_operand("value"sv, m_value, executable));
}
ByteString PrepareYield::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("PrepareYield {}, {}",
format_operand("dst"sv, m_dest, executable),
format_operand("value"sv, m_value, executable));
}
ByteString Await::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Await {}, continuation:{}",
format_operand("argument"sv, m_argument, executable),
m_continuation_label);
}
ByteString GetByValue::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetByValue {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable));
}
ByteString GetByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetByValueWithThis {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable));
}
ByteString PutByValue::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto kind = property_kind_to_string(m_kind);
return ByteString::formatted("PutByValue {}, {}, {}, kind:{}",
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable),
format_operand("src"sv, m_src, executable),
kind);
}
ByteString PutByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
auto kind = property_kind_to_string(m_kind);
return ByteString::formatted("PutByValueWithThis {}, {}, {}, {}, kind:{}",
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable),
format_operand("src"sv, m_src, executable),
format_operand("this"sv, m_this_value, executable),
kind);
}
ByteString DeleteByValue::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("DeleteByValue {}, {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable));
}
ByteString DeleteByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("DeleteByValueWithThis {}, {}, {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("base"sv, m_base, executable),
format_operand("property"sv, m_property, executable),
format_operand("this"sv, m_this_value, executable));
}
ByteString GetIterator::to_byte_string_impl(Executable const& executable) const
{
auto hint = m_hint == IteratorHint::Sync ? "sync" : "async";
return ByteString::formatted("GetIterator {}, {}, hint:{}",
format_operand("dst"sv, m_dst, executable),
format_operand("iterable"sv, m_iterable, executable),
hint);
}
ByteString GetMethod::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetMethod {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("object"sv, m_object, executable),
executable.identifier_table->get(m_property));
}
ByteString GetObjectPropertyIterator::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetObjectPropertyIterator {}, {}",
format_operand("dst"sv, dst(), executable),
format_operand("object"sv, object(), executable));
}
ByteString IteratorClose::to_byte_string_impl(Bytecode::Executable const& executable) const
{
if (!m_completion_value.has_value())
return ByteString::formatted("IteratorClose {}, completion_type={} completion_value=<empty>",
format_operand("iterator_record"sv, m_iterator_record, executable),
to_underlying(m_completion_type));
auto completion_value_string = m_completion_value->to_string_without_side_effects();
return ByteString::formatted("IteratorClose {}, completion_type={} completion_value={}",
format_operand("iterator_record"sv, m_iterator_record, executable),
to_underlying(m_completion_type), completion_value_string);
}
ByteString AsyncIteratorClose::to_byte_string_impl(Bytecode::Executable const& executable) const
{
if (!m_completion_value.has_value()) {
return ByteString::formatted("AsyncIteratorClose {}, completion_type:{} completion_value:<empty>",
format_operand("iterator_record"sv, m_iterator_record, executable),
to_underlying(m_completion_type));
}
return ByteString::formatted("AsyncIteratorClose {}, completion_type:{}, completion_value:{}",
format_operand("iterator_record"sv, m_iterator_record, executable),
to_underlying(m_completion_type), m_completion_value);
}
ByteString IteratorNext::to_byte_string_impl(Executable const& executable) const
{
return ByteString::formatted("IteratorNext {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("iterator_record"sv, m_iterator_record, executable));
}
ByteString ResolveThisBinding::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ResolveThisBinding {}", format_operand("dst"sv, m_dst, executable));
}
ByteString ResolveSuperBase::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ResolveSuperBase {}",
format_operand("dst"sv, m_dst, executable));
}
ByteString GetNewTarget::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetNewTarget {}", format_operand("dst"sv, m_dst, executable));
}
ByteString GetImportMeta::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetImportMeta {}", format_operand("dst"sv, m_dst, executable));
}
ByteString TypeofVariable::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("TypeofVariable {}, {}",
format_operand("dst"sv, m_dst, executable),
executable.identifier_table->get(m_identifier));
}
ByteString BlockDeclarationInstantiation::to_byte_string_impl(Bytecode::Executable const&) const
{
return "BlockDeclarationInstantiation"sv;
}
ByteString ImportCall::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("ImportCall {}, {}, {}",
format_operand("dst"sv, m_dst, executable),
format_operand("specifier"sv, m_specifier, executable),
format_operand("options"sv, m_options, executable));
}
ByteString Catch::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Catch {}",
format_operand("dst"sv, m_dst, executable));
}
ByteString LeaveFinally::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("LeaveFinally");
}
ByteString RestoreScheduledJump::to_byte_string_impl(Bytecode::Executable const&) const
{
return ByteString::formatted("RestoreScheduledJump");
}
ByteString GetObjectFromIteratorRecord::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetObjectFromIteratorRecord {}, {}",
format_operand("object"sv, m_object, executable),
format_operand("iterator_record"sv, m_iterator_record, executable));
}
ByteString GetNextMethodFromIteratorRecord::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("GetNextMethodFromIteratorRecord {}, {}",
format_operand("next_method"sv, m_next_method, executable),
format_operand("iterator_record"sv, m_iterator_record, executable));
}
ByteString End::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("End {}", format_operand("value"sv, m_value, executable));
}
ByteString Dump::to_byte_string_impl(Bytecode::Executable const& executable) const
{
return ByteString::formatted("Dump '{}', {}", m_text,
format_operand("value"sv, m_value, executable));
}
}