ladybird/Userland/Libraries/LibJS/Runtime/Shape.cpp
Andreas Kling 3c74dc9f4d LibJS: Segregate GC-allocated objects by type
This patch adds two macros to declare per-type allocators:

- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)

When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.

The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.

It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)

There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.

Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
2023-11-19 12:10:31 +01:00

237 lines
7.8 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Heap/DeferGC.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/VM.h>
namespace JS {
JS_DEFINE_ALLOCATOR(Shape);
Shape* Shape::create_unique_clone() const
{
auto new_shape = heap().allocate_without_realm<Shape>(m_realm);
new_shape->m_unique = true;
new_shape->m_prototype = m_prototype;
ensure_property_table();
new_shape->ensure_property_table();
(*new_shape->m_property_table) = *m_property_table;
new_shape->m_property_count = new_shape->m_property_table->size();
return new_shape;
}
Shape* Shape::get_or_prune_cached_forward_transition(TransitionKey const& key)
{
if (!m_forward_transitions)
return nullptr;
auto it = m_forward_transitions->find(key);
if (it == m_forward_transitions->end())
return nullptr;
if (!it->value) {
// The cached forward transition has gone stale (from garbage collection). Prune it.
m_forward_transitions->remove(it);
return nullptr;
}
return it->value;
}
Shape* Shape::get_or_prune_cached_prototype_transition(Object* prototype)
{
if (!m_prototype_transitions)
return nullptr;
auto it = m_prototype_transitions->find(prototype);
if (it == m_prototype_transitions->end())
return nullptr;
if (!it->value) {
// The cached prototype transition has gone stale (from garbage collection). Prune it.
m_prototype_transitions->remove(it);
return nullptr;
}
return it->value;
}
Shape* Shape::create_put_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, property_key, attributes, TransitionType::Put);
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
return new_shape;
}
Shape* Shape::create_configure_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto* existing_shape = get_or_prune_cached_forward_transition(key))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, property_key, attributes, TransitionType::Configure);
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
return new_shape;
}
Shape* Shape::create_prototype_transition(Object* new_prototype)
{
if (auto* existing_shape = get_or_prune_cached_prototype_transition(new_prototype))
return existing_shape;
auto new_shape = heap().allocate_without_realm<Shape>(*this, new_prototype);
if (!m_prototype_transitions)
m_prototype_transitions = make<HashMap<GCPtr<Object>, WeakPtr<Shape>>>();
m_prototype_transitions->set(new_prototype, new_shape.ptr());
return new_shape;
}
Shape::Shape(Realm& realm)
: m_realm(realm)
{
}
Shape::Shape(Shape& previous_shape, StringOrSymbol const& property_key, PropertyAttributes attributes, TransitionType transition_type)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_property_key(property_key)
, m_prototype(previous_shape.m_prototype)
, m_property_count(transition_type == TransitionType::Put ? previous_shape.m_property_count + 1 : previous_shape.m_property_count)
, m_attributes(attributes)
, m_transition_type(transition_type)
{
}
Shape::Shape(Shape& previous_shape, Object* new_prototype)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_prototype(new_prototype)
, m_property_count(previous_shape.m_property_count)
, m_transition_type(TransitionType::Prototype)
{
}
void Shape::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_realm);
visitor.visit(m_prototype);
visitor.visit(m_previous);
m_property_key.visit_edges(visitor);
if (m_property_table) {
for (auto& it : *m_property_table)
it.key.visit_edges(visitor);
}
visitor.ignore(m_prototype_transitions);
}
Optional<PropertyMetadata> Shape::lookup(StringOrSymbol const& property_key) const
{
if (m_property_count == 0)
return {};
auto property = property_table().get(property_key);
if (!property.has_value())
return {};
return property;
}
FLATTEN OrderedHashMap<StringOrSymbol, PropertyMetadata> const& Shape::property_table() const
{
ensure_property_table();
return *m_property_table;
}
void Shape::ensure_property_table() const
{
if (m_property_table)
return;
m_property_table = make<OrderedHashMap<StringOrSymbol, PropertyMetadata>>();
u32 next_offset = 0;
Vector<Shape const&, 64> transition_chain;
for (auto shape = m_previous; shape; shape = shape->m_previous) {
if (shape->m_property_table) {
*m_property_table = *shape->m_property_table;
next_offset = shape->m_property_count;
break;
}
transition_chain.append(*shape);
}
transition_chain.append(*this);
for (auto const& shape : transition_chain.in_reverse()) {
if (!shape.m_property_key.is_valid()) {
// Ignore prototype transitions as they don't affect the key map.
continue;
}
if (shape.m_transition_type == TransitionType::Put) {
m_property_table->set(shape.m_property_key, { next_offset++, shape.m_attributes });
} else if (shape.m_transition_type == TransitionType::Configure) {
auto it = m_property_table->find(shape.m_property_key);
VERIFY(it != m_property_table->end());
it->value.attributes = shape.m_attributes;
}
}
}
void Shape::add_property_to_unique_shape(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
VERIFY(is_unique());
VERIFY(m_property_table);
VERIFY(!m_property_table->contains(property_key));
m_property_table->set(property_key, { static_cast<u32>(m_property_table->size()), attributes });
VERIFY(m_property_count < NumericLimits<u32>::max());
++m_property_count;
++m_unique_shape_serial_number;
}
void Shape::reconfigure_property_in_unique_shape(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
VERIFY(is_unique());
VERIFY(m_property_table);
auto it = m_property_table->find(property_key);
VERIFY(it != m_property_table->end());
it->value.attributes = attributes;
m_property_table->set(property_key, it->value);
++m_unique_shape_serial_number;
}
void Shape::remove_property_from_unique_shape(StringOrSymbol const& property_key, size_t offset)
{
VERIFY(is_unique());
VERIFY(m_property_table);
if (m_property_table->remove(property_key))
--m_property_count;
for (auto& it : *m_property_table) {
VERIFY(it.value.offset != offset);
if (it.value.offset > offset)
--it.value.offset;
}
++m_unique_shape_serial_number;
}
void Shape::add_property_without_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
VERIFY(property_key.is_valid());
ensure_property_table();
if (m_property_table->set(property_key, { m_property_count, attributes }) == AK::HashSetResult::InsertedNewEntry) {
VERIFY(m_property_count < NumericLimits<u32>::max());
++m_property_count;
}
}
FLATTEN void Shape::add_property_without_transition(PropertyKey const& property_key, PropertyAttributes attributes)
{
VERIFY(property_key.is_valid());
add_property_without_transition(property_key.to_string_or_symbol(), attributes);
}
}