
This patch adds two macros to declare per-type allocators: - JS_DECLARE_ALLOCATOR(TypeName) - JS_DEFINE_ALLOCATOR(TypeName) When used, they add a type-specific CellAllocator that the Heap will delegate allocation requests to. The result of this is that GC objects of the same type always end up within the same HeapBlock, drastically reducing the ability to perform type confusion attacks. It also improves HeapBlock utilization, since each block now has cells sized exactly to the type used within that block. (Previously we only had a handful of block sizes available, and most GC allocations ended up with a large amount of slack in their tails.) There is a small performance hit from this, but I'm sure we can make up for it elsewhere. Note that the old size-based allocators still exist, and we fall back to them for any type that doesn't have its own CellAllocator.
665 lines
33 KiB
C++
665 lines
33 KiB
C++
/*
|
||
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
||
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <AK/BuiltinWrappers.h>
|
||
#include <AK/CharacterTypes.h>
|
||
#include <AK/FloatingPointStringConversions.h>
|
||
#include <AK/Hex.h>
|
||
#include <AK/UnicodeUtils.h>
|
||
#include <AK/Utf16View.h>
|
||
#include <AK/Utf8View.h>
|
||
#include <LibJS/Heap/DeferGC.h>
|
||
#include <LibJS/Runtime/AbstractOperations.h>
|
||
#include <LibJS/Runtime/AggregateErrorConstructor.h>
|
||
#include <LibJS/Runtime/ArrayBufferConstructor.h>
|
||
#include <LibJS/Runtime/ArrayConstructor.h>
|
||
#include <LibJS/Runtime/ArrayPrototype.h>
|
||
#include <LibJS/Runtime/AsyncFunctionConstructor.h>
|
||
#include <LibJS/Runtime/AsyncGeneratorFunctionConstructor.h>
|
||
#include <LibJS/Runtime/AsyncGeneratorPrototype.h>
|
||
#include <LibJS/Runtime/AtomicsObject.h>
|
||
#include <LibJS/Runtime/BigIntConstructor.h>
|
||
#include <LibJS/Runtime/BooleanConstructor.h>
|
||
#include <LibJS/Runtime/ConsoleObject.h>
|
||
#include <LibJS/Runtime/DataViewConstructor.h>
|
||
#include <LibJS/Runtime/DateConstructor.h>
|
||
#include <LibJS/Runtime/DisposableStackConstructor.h>
|
||
#include <LibJS/Runtime/ErrorConstructor.h>
|
||
#include <LibJS/Runtime/FinalizationRegistryConstructor.h>
|
||
#include <LibJS/Runtime/FinalizationRegistryPrototype.h>
|
||
#include <LibJS/Runtime/FunctionConstructor.h>
|
||
#include <LibJS/Runtime/GeneratorFunctionConstructor.h>
|
||
#include <LibJS/Runtime/GeneratorPrototype.h>
|
||
#include <LibJS/Runtime/GlobalEnvironment.h>
|
||
#include <LibJS/Runtime/GlobalObject.h>
|
||
#include <LibJS/Runtime/Intl/CollatorConstructor.h>
|
||
#include <LibJS/Runtime/Intl/DateTimeFormatConstructor.h>
|
||
#include <LibJS/Runtime/Intl/DisplayNamesConstructor.h>
|
||
#include <LibJS/Runtime/Intl/DurationFormatConstructor.h>
|
||
#include <LibJS/Runtime/Intl/Intl.h>
|
||
#include <LibJS/Runtime/Intl/ListFormatConstructor.h>
|
||
#include <LibJS/Runtime/Intl/LocaleConstructor.h>
|
||
#include <LibJS/Runtime/Intl/NumberFormatConstructor.h>
|
||
#include <LibJS/Runtime/Intl/PluralRulesConstructor.h>
|
||
#include <LibJS/Runtime/Intl/RelativeTimeFormatConstructor.h>
|
||
#include <LibJS/Runtime/Intl/SegmenterConstructor.h>
|
||
#include <LibJS/Runtime/IteratorConstructor.h>
|
||
#include <LibJS/Runtime/JSONObject.h>
|
||
#include <LibJS/Runtime/MapConstructor.h>
|
||
#include <LibJS/Runtime/MathObject.h>
|
||
#include <LibJS/Runtime/NumberConstructor.h>
|
||
#include <LibJS/Runtime/Object.h>
|
||
#include <LibJS/Runtime/ObjectConstructor.h>
|
||
#include <LibJS/Runtime/PromiseConstructor.h>
|
||
#include <LibJS/Runtime/ProxyConstructor.h>
|
||
#include <LibJS/Runtime/Realm.h>
|
||
#include <LibJS/Runtime/ReflectObject.h>
|
||
#include <LibJS/Runtime/RegExpConstructor.h>
|
||
#include <LibJS/Runtime/SetConstructor.h>
|
||
#include <LibJS/Runtime/ShadowRealmConstructor.h>
|
||
#include <LibJS/Runtime/Shape.h>
|
||
#include <LibJS/Runtime/SharedArrayBufferConstructor.h>
|
||
#include <LibJS/Runtime/StringConstructor.h>
|
||
#include <LibJS/Runtime/StringPrototype.h>
|
||
#include <LibJS/Runtime/SuppressedErrorConstructor.h>
|
||
#include <LibJS/Runtime/SymbolConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/CalendarConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/DurationConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/InstantConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/PlainDateConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/PlainDateTimeConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/PlainMonthDayConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/PlainTimeConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/PlainYearMonthConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/Temporal.h>
|
||
#include <LibJS/Runtime/Temporal/TimeZoneConstructor.h>
|
||
#include <LibJS/Runtime/Temporal/ZonedDateTimeConstructor.h>
|
||
#include <LibJS/Runtime/TypedArray.h>
|
||
#include <LibJS/Runtime/Value.h>
|
||
#include <LibJS/Runtime/ValueInlines.h>
|
||
#include <LibJS/Runtime/WeakMapConstructor.h>
|
||
#include <LibJS/Runtime/WeakRefConstructor.h>
|
||
#include <LibJS/Runtime/WeakSetConstructor.h>
|
||
|
||
namespace JS {
|
||
|
||
JS_DEFINE_ALLOCATOR(GlobalObject);
|
||
|
||
GlobalObject::GlobalObject(Realm& realm)
|
||
: Object(GlobalObjectTag::Tag, realm)
|
||
{
|
||
ensure_shape_is_unique();
|
||
Object::set_prototype(realm.intrinsics().object_prototype());
|
||
}
|
||
|
||
// 9.3.4 SetDefaultGlobalBindings ( realmRec ), https://tc39.es/ecma262/#sec-setdefaultglobalbindings
|
||
Object& set_default_global_bindings(Realm& realm)
|
||
{
|
||
auto& vm = realm.vm();
|
||
|
||
// 1. Let global be realmRec.[[GlobalObject]].
|
||
auto& global = realm.global_object();
|
||
|
||
// 2. For each property of the Global Object specified in clause 19, do
|
||
// a. Let name be the String value of the property name.
|
||
// b. Let desc be the fully populated data Property Descriptor for the property, containing the specified attributes for the property.
|
||
// For properties listed in 19.2, 19.3, or 19.4 the value of the [[Value]] attribute is the corresponding intrinsic object from realmRec.
|
||
// c. Perform ? DefinePropertyOrThrow(global, name, desc).
|
||
// NOTE: This function is infallible as we set properties directly; property clashes in global object construction are not expected.
|
||
|
||
u8 attr = Attribute::Writable | Attribute::Configurable;
|
||
|
||
// 19.2 Function Properties of the Global Object, https://tc39.es/ecma262/#sec-function-properties-of-the-global-object
|
||
global.define_direct_property(vm.names.eval, realm.intrinsics().eval_function(), attr);
|
||
global.define_direct_property(vm.names.isFinite, realm.intrinsics().is_finite_function(), attr);
|
||
global.define_direct_property(vm.names.isNaN, realm.intrinsics().is_nan_function(), attr);
|
||
global.define_direct_property(vm.names.parseFloat, realm.intrinsics().parse_float_function(), attr);
|
||
global.define_direct_property(vm.names.parseInt, realm.intrinsics().parse_int_function(), attr);
|
||
global.define_direct_property(vm.names.decodeURI, realm.intrinsics().decode_uri_function(), attr);
|
||
global.define_direct_property(vm.names.decodeURIComponent, realm.intrinsics().decode_uri_component_function(), attr);
|
||
global.define_direct_property(vm.names.encodeURI, realm.intrinsics().encode_uri_function(), attr);
|
||
global.define_direct_property(vm.names.encodeURIComponent, realm.intrinsics().encode_uri_component_function(), attr);
|
||
|
||
// 19.1 Value Properties of the Global Object, https://tc39.es/ecma262/#sec-value-properties-of-the-global-object
|
||
global.define_direct_property(vm.names.globalThis, &global, attr);
|
||
global.define_direct_property(vm.names.Infinity, js_infinity(), 0);
|
||
global.define_direct_property(vm.names.NaN, js_nan(), 0);
|
||
global.define_direct_property(vm.names.undefined, js_undefined(), 0);
|
||
|
||
// 19.3 Constructor Properties of the Global Object, https://tc39.es/ecma262/#sec-constructor-properties-of-the-global-object
|
||
global.define_intrinsic_accessor(vm.names.AggregateError, attr, [](auto& realm) -> Value { return realm.intrinsics().aggregate_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Array, attr, [](auto& realm) -> Value { return realm.intrinsics().array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.ArrayBuffer, attr, [](auto& realm) -> Value { return realm.intrinsics().array_buffer_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.BigInt, attr, [](auto& realm) -> Value { return realm.intrinsics().bigint_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.BigInt64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().big_int64_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.BigUint64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().big_uint64_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Boolean, attr, [](auto& realm) -> Value { return realm.intrinsics().boolean_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.DataView, attr, [](auto& realm) -> Value { return realm.intrinsics().data_view_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Date, attr, [](auto& realm) -> Value { return realm.intrinsics().date_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.DisposableStack, attr, [](auto& realm) -> Value { return realm.intrinsics().disposable_stack_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Error, attr, [](auto& realm) -> Value { return realm.intrinsics().error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.EvalError, attr, [](auto& realm) -> Value { return realm.intrinsics().eval_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.FinalizationRegistry, attr, [](auto& realm) -> Value { return realm.intrinsics().finalization_registry_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Float32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().float32_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Float64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().float64_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Function, attr, [](auto& realm) -> Value { return realm.intrinsics().function_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Int8Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int8_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Int16Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int16_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Int32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int32_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Iterator, attr, [](auto& realm) -> Value { return realm.intrinsics().iterator_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Map, attr, [](auto& realm) -> Value { return realm.intrinsics().map_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Number, attr, [](auto& realm) -> Value { return realm.intrinsics().number_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Object, attr, [](auto& realm) -> Value { return realm.intrinsics().object_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Promise, attr, [](auto& realm) -> Value { return realm.intrinsics().promise_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Proxy, attr, [](auto& realm) -> Value { return realm.intrinsics().proxy_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.RangeError, attr, [](auto& realm) -> Value { return realm.intrinsics().range_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.ReferenceError, attr, [](auto& realm) -> Value { return realm.intrinsics().reference_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.RegExp, attr, [](auto& realm) -> Value { return realm.intrinsics().regexp_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Set, attr, [](auto& realm) -> Value { return realm.intrinsics().set_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.ShadowRealm, attr, [](auto& realm) -> Value { return realm.intrinsics().shadow_realm_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.SharedArrayBuffer, attr, [](auto& realm) -> Value { return realm.intrinsics().shared_array_buffer_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.String, attr, [](auto& realm) -> Value { return realm.intrinsics().string_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.SuppressedError, attr, [](auto& realm) -> Value { return realm.intrinsics().suppressed_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Symbol, attr, [](auto& realm) -> Value { return realm.intrinsics().symbol_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.SyntaxError, attr, [](auto& realm) -> Value { return realm.intrinsics().syntax_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.TypeError, attr, [](auto& realm) -> Value { return realm.intrinsics().type_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Uint8Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint8_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Uint8ClampedArray, attr, [](auto& realm) -> Value { return realm.intrinsics().uint8_clamped_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Uint16Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint16_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.Uint32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint32_array_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.URIError, attr, [](auto& realm) -> Value { return realm.intrinsics().uri_error_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.WeakMap, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_map_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.WeakRef, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_ref_constructor(); });
|
||
global.define_intrinsic_accessor(vm.names.WeakSet, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_set_constructor(); });
|
||
|
||
// 19.4 Other Properties of the Global Object, https://tc39.es/ecma262/#sec-other-properties-of-the-global-object
|
||
global.define_intrinsic_accessor(vm.names.Atomics, attr, [](auto& realm) -> Value { return realm.intrinsics().atomics_object(); });
|
||
global.define_intrinsic_accessor(vm.names.Intl, attr, [](auto& realm) -> Value { return realm.intrinsics().intl_object(); });
|
||
global.define_intrinsic_accessor(vm.names.JSON, attr, [](auto& realm) -> Value { return realm.intrinsics().json_object(); });
|
||
global.define_intrinsic_accessor(vm.names.Math, attr, [](auto& realm) -> Value { return realm.intrinsics().math_object(); });
|
||
global.define_intrinsic_accessor(vm.names.Reflect, attr, [](auto& realm) -> Value { return realm.intrinsics().reflect_object(); });
|
||
global.define_intrinsic_accessor(vm.names.Temporal, attr, [](auto& realm) -> Value { return realm.intrinsics().temporal_object(); });
|
||
|
||
// B.2.1 Additional Properties of the Global Object, https://tc39.es/ecma262/#sec-additional-properties-of-the-global-object
|
||
global.define_direct_property(vm.names.escape, realm.intrinsics().escape_function(), attr);
|
||
global.define_direct_property(vm.names.unescape, realm.intrinsics().unescape_function(), attr);
|
||
|
||
// Non-standard
|
||
global.define_direct_property(vm.names.InternalError, realm.intrinsics().internal_error_constructor(), attr);
|
||
global.define_direct_property(vm.names.console, realm.intrinsics().console_object(), attr);
|
||
|
||
// 3. Return global.
|
||
return global;
|
||
}
|
||
|
||
void GlobalObject::initialize(Realm& realm)
|
||
{
|
||
Base::initialize(realm);
|
||
|
||
auto& vm = this->vm();
|
||
|
||
// Non-standard
|
||
u8 attr = Attribute::Writable | Attribute::Configurable;
|
||
define_native_function(realm, vm.names.gc, gc, 0, attr);
|
||
}
|
||
|
||
GlobalObject::~GlobalObject() = default;
|
||
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::gc)
|
||
{
|
||
#ifdef AK_OS_SERENITY
|
||
dbgln("Forced garbage collection requested!");
|
||
#endif
|
||
vm.heap().collect_garbage();
|
||
return js_undefined();
|
||
}
|
||
|
||
// 19.2.1 eval ( x ), https://tc39.es/ecma262/#sec-eval-x
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::eval)
|
||
{
|
||
auto x = vm.argument(0);
|
||
|
||
// 1. Return ? PerformEval(x, false, false).
|
||
return perform_eval(vm, x, CallerMode::NonStrict, EvalMode::Indirect);
|
||
}
|
||
|
||
// 19.2.2 isFinite ( number ), https://tc39.es/ecma262/#sec-isfinite-number
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::is_finite)
|
||
{
|
||
auto number = vm.argument(0);
|
||
|
||
// 1. Let num be ? ToNumber(number).
|
||
auto num = TRY(number.to_number(vm));
|
||
|
||
// 2. If num is not finite, return false.
|
||
// 3. Otherwise, return true.
|
||
return Value(num.is_finite_number());
|
||
}
|
||
|
||
// 19.2.3 isNaN ( number ), https://tc39.es/ecma262/#sec-isnan-number
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::is_nan)
|
||
{
|
||
auto number = vm.argument(0);
|
||
|
||
// 1. Let num be ? ToNumber(number).
|
||
auto num = TRY(number.to_number(vm));
|
||
|
||
// 2. If num is NaN, return true.
|
||
// 3. Otherwise, return false.
|
||
return Value(num.is_nan());
|
||
}
|
||
|
||
// 19.2.4 parseFloat ( string ), https://tc39.es/ecma262/#sec-parsefloat-string
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::parse_float)
|
||
{
|
||
auto string = vm.argument(0);
|
||
|
||
// OPTIMIZATION: We can skip the number-to-string-to-number round trip when the value is already a number.
|
||
if (string.is_number())
|
||
return string;
|
||
|
||
// 1. Let inputString be ? ToString(string).
|
||
auto input_string = TRY(string.to_string(vm));
|
||
|
||
// 2. Let trimmedString be ! TrimString(inputString, start).
|
||
auto trimmed_string = MUST(trim_string(vm, PrimitiveString::create(vm, move(input_string)), TrimMode::Left));
|
||
if (trimmed_string.is_empty())
|
||
return js_nan();
|
||
|
||
// 3. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see 7.1.4.1), return NaN.
|
||
// 4. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies the syntax of a StrDecimalLiteral.
|
||
// 5. Let parsedNumber be ParseText(StringToCodePoints(numberString), StrDecimalLiteral).
|
||
// 6. Assert: parsedNumber is a Parse Node.
|
||
// 7. Return StringNumericValue of parsedNumber.
|
||
auto trimmed_string_view = trimmed_string.bytes_as_string_view();
|
||
auto const* begin = trimmed_string_view.characters_without_null_termination();
|
||
auto const* end = begin + trimmed_string_view.length();
|
||
|
||
auto parsed_number = parse_first_floating_point<double>(begin, end);
|
||
if (parsed_number.parsed_value())
|
||
return parsed_number.value;
|
||
|
||
auto first_code_point = *trimmed_string.code_points().begin();
|
||
if (first_code_point == '-' || first_code_point == '+')
|
||
trimmed_string_view = trimmed_string_view.substring_view(1);
|
||
|
||
if (trimmed_string_view.starts_with("Infinity"sv, AK::CaseSensitivity::CaseSensitive)) {
|
||
// Only an immediate - means we should return negative infinity
|
||
return first_code_point == '-' ? js_negative_infinity() : js_infinity();
|
||
}
|
||
|
||
return js_nan();
|
||
}
|
||
|
||
// 19.2.5 parseInt ( string, radix ), https://tc39.es/ecma262/#sec-parseint-string-radix
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::parse_int)
|
||
{
|
||
auto string = vm.argument(0);
|
||
|
||
// 1. Let inputString be ? ToString(string).
|
||
auto input_string = TRY(string.to_string(vm));
|
||
|
||
// 2. Let S be ! TrimString(inputString, start).
|
||
auto trimmed_string = MUST(trim_string(vm, PrimitiveString::create(vm, move(input_string)), TrimMode::Left));
|
||
|
||
// 3. Let sign be 1.
|
||
auto sign = 1;
|
||
|
||
// 4. If S is not empty and the first code unit of S is the code unit 0x002D (HYPHEN-MINUS), set sign to -1.
|
||
auto first_code_point = trimmed_string.is_empty() ? OptionalNone {} : Optional<u32> { *trimmed_string.code_points().begin() };
|
||
if (first_code_point == 0x2Du)
|
||
sign = -1;
|
||
|
||
// 5. If S is not empty and the first code unit of S is the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS), remove the first code unit from S.
|
||
auto trimmed_view = trimmed_string.bytes_as_string_view();
|
||
if (first_code_point == 0x2Bu || first_code_point == 0x2Du)
|
||
trimmed_view = trimmed_view.substring_view(1);
|
||
|
||
// 6. Let R be ℝ(? ToInt32(radix)).
|
||
auto radix = TRY(vm.argument(1).to_i32(vm));
|
||
|
||
// 7. Let stripPrefix be true.
|
||
auto strip_prefix = true;
|
||
|
||
// 8. If R ≠ 0, then
|
||
if (radix != 0) {
|
||
// a. If R < 2 or R > 36, return NaN.
|
||
if (radix < 2 || radix > 36)
|
||
return js_nan();
|
||
|
||
// b. If R ≠ 16, set stripPrefix to false.
|
||
if (radix != 16)
|
||
strip_prefix = false;
|
||
}
|
||
// 9. Else,
|
||
else {
|
||
// a. Set R to 10.
|
||
radix = 10;
|
||
}
|
||
|
||
// 10. If stripPrefix is true, then
|
||
if (strip_prefix) {
|
||
// a. If the length of S is at least 2 and the first two code units of S are either "0x" or "0X", then
|
||
if (trimmed_view.length() >= 2 && trimmed_view.substring_view(0, 2).equals_ignoring_ascii_case("0x"sv)) {
|
||
// i. Remove the first two code units from S.
|
||
trimmed_view = trimmed_view.substring_view(2);
|
||
|
||
// ii. Set R to 16.
|
||
radix = 16;
|
||
}
|
||
}
|
||
|
||
// 11. If S contains a code unit that is not a radix-R digit, let end be the index within S of the first such code unit; otherwise, let end be the length of S.
|
||
// 12. Let Z be the substring of S from 0 to end.
|
||
// 13. If Z is empty, return NaN.
|
||
// 14. Let mathInt be the integer value that is represented by Z in radix-R notation, using the letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-approximated integer representing the integer value denoted by Z in radix-R notation.)
|
||
auto parse_digit = [&](u32 code_point) -> Optional<u32> {
|
||
if (!is_ascii_alphanumeric(code_point))
|
||
return {};
|
||
auto digit = parse_ascii_base36_digit(code_point);
|
||
if (digit >= (u32)radix)
|
||
return {};
|
||
return digit;
|
||
};
|
||
|
||
bool had_digits = false;
|
||
double number = 0;
|
||
for (auto code_point : Utf8View(trimmed_view)) {
|
||
auto digit = parse_digit(code_point);
|
||
if (!digit.has_value())
|
||
break;
|
||
had_digits = true;
|
||
number *= radix;
|
||
number += digit.value();
|
||
}
|
||
|
||
if (!had_digits)
|
||
return js_nan();
|
||
|
||
// 15. If mathInt = 0, then
|
||
// a. If sign = -1, return -0𝔽.
|
||
// b. Return +0𝔽.
|
||
// 16. Return 𝔽(sign × mathInt).
|
||
return Value(sign * number);
|
||
}
|
||
|
||
// 19.2.6.5 Encode ( string, extraUnescaped ), https://tc39.es/ecma262/#sec-encode
|
||
static ThrowCompletionOr<DeprecatedString> encode(VM& vm, DeprecatedString const& string, StringView unescaped_set)
|
||
{
|
||
auto utf16_string = Utf16String::create(string);
|
||
|
||
// 1. Let strLen be the length of string.
|
||
auto string_length = utf16_string.length_in_code_units();
|
||
|
||
// 2. Let R be the empty String.
|
||
StringBuilder encoded_builder;
|
||
|
||
// 3. Let alwaysUnescaped be the string-concatenation of the ASCII word characters and "-.!~*'()".
|
||
// 4. Let unescapedSet be the string-concatenation of alwaysUnescaped and extraUnescaped.
|
||
// OPTIMIZATION: We pass in the entire unescapedSet as a StringView to avoid an extra allocation.
|
||
|
||
// 5. Let k be 0.
|
||
auto k = 0u;
|
||
|
||
// 6. Repeat,
|
||
while (k < string_length) {
|
||
// a. If k = strLen, return R.
|
||
// Handled below
|
||
|
||
// b. Let C be the code unit at index k within string.
|
||
auto code_unit = utf16_string.code_unit_at(k);
|
||
// c. If C is in unescapedSet, then
|
||
// NOTE: We assume the unescaped set only contains ascii characters as unescaped_set is a StringView.
|
||
if (code_unit < 0x80 && unescaped_set.contains(static_cast<char>(code_unit))) {
|
||
// i. Set k to k + 1.
|
||
k++;
|
||
|
||
// ii. Set R to the string-concatenation of R and C.
|
||
encoded_builder.append(code_unit);
|
||
}
|
||
// d. Else,
|
||
else {
|
||
// i. Let cp be CodePointAt(string, k).
|
||
auto code_point = code_point_at(utf16_string.view(), k);
|
||
// ii. If cp.[[IsUnpairedSurrogate]] is true, throw a URIError exception.
|
||
if (code_point.is_unpaired_surrogate)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
// iii. Set k to k + cp.[[CodeUnitCount]].
|
||
k += code_point.code_unit_count;
|
||
|
||
// iv. Let Octets be the List of octets resulting by applying the UTF-8 transformation to cp.[[CodePoint]].
|
||
// v. For each element octet of Octets, do
|
||
auto nwritten = AK::UnicodeUtils::code_point_to_utf8(code_point.code_point, [&encoded_builder](u8 octet) {
|
||
// 1. Let hex be the String representation of octet, formatted as an uppercase hexadecimal number.
|
||
// 2. Set R to the string-concatenation of R, "%", and ! StringPad(hex, 2𝔽, "0", start).
|
||
encoded_builder.appendff("%{:02X}", octet);
|
||
});
|
||
VERIFY(nwritten > 0);
|
||
}
|
||
}
|
||
return encoded_builder.to_deprecated_string();
|
||
}
|
||
|
||
// 19.2.6.6 Decode ( string, preserveEscapeSet ), https://tc39.es/ecma262/#sec-decode
|
||
// FIXME: Add spec comments to this implementation. It deviates a lot, so that's a bit tricky.
|
||
static ThrowCompletionOr<DeprecatedString> decode(VM& vm, DeprecatedString const& string, StringView reserved_set)
|
||
{
|
||
StringBuilder decoded_builder;
|
||
auto code_point_start_offset = 0u;
|
||
auto expected_continuation_bytes = 0;
|
||
for (size_t k = 0; k < string.length(); k++) {
|
||
auto code_unit = string[k];
|
||
if (code_unit != '%') {
|
||
if (expected_continuation_bytes > 0)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
decoded_builder.append(code_unit);
|
||
continue;
|
||
}
|
||
|
||
if (k + 2 >= string.length())
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
auto first_digit = decode_hex_digit(string[k + 1]);
|
||
if (first_digit >= 16)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
auto second_digit = decode_hex_digit(string[k + 2]);
|
||
if (second_digit >= 16)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
u8 decoded_code_unit = (first_digit << 4) | second_digit;
|
||
k += 2;
|
||
if (expected_continuation_bytes > 0) {
|
||
decoded_builder.append(decoded_code_unit);
|
||
expected_continuation_bytes--;
|
||
if (expected_continuation_bytes == 0 && !Utf8View(decoded_builder.string_view().substring_view(code_point_start_offset)).validate())
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
continue;
|
||
}
|
||
|
||
if (decoded_code_unit < 0x80) {
|
||
if (reserved_set.contains(static_cast<char>(decoded_code_unit)))
|
||
decoded_builder.append(string.substring_view(k - 2, 3));
|
||
else
|
||
decoded_builder.append(decoded_code_unit);
|
||
continue;
|
||
}
|
||
|
||
auto leading_ones = count_leading_zeroes_safe(static_cast<u8>(~decoded_code_unit));
|
||
if (leading_ones == 1 || leading_ones > 4)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
|
||
code_point_start_offset = decoded_builder.length();
|
||
decoded_builder.append(decoded_code_unit);
|
||
expected_continuation_bytes = leading_ones - 1;
|
||
}
|
||
if (expected_continuation_bytes > 0)
|
||
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
|
||
return decoded_builder.to_deprecated_string();
|
||
}
|
||
|
||
// 19.2.6.1 decodeURI ( encodedURI ), https://tc39.es/ecma262/#sec-decodeuri-encodeduri
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::decode_uri)
|
||
{
|
||
// 1. Let uriString be ? ToString(encodedURI).
|
||
auto uri_string = TRY(vm.argument(0).to_deprecated_string(vm));
|
||
|
||
// 2. Let preserveEscapeSet be ";/?:@&=+$,#".
|
||
// 3. Return ? Decode(uriString, preserveEscapeSet).
|
||
auto decoded = TRY(decode(vm, uri_string, ";/?:@&=+$,#"sv));
|
||
return PrimitiveString::create(vm, move(decoded));
|
||
}
|
||
|
||
// 19.2.6.2 decodeURIComponent ( encodedURIComponent ), https://tc39.es/ecma262/#sec-decodeuricomponent-encodeduricomponent
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::decode_uri_component)
|
||
{
|
||
auto encoded_uri_component = vm.argument(0);
|
||
|
||
// 1. Let componentString be ? ToString(encodedURIComponent).
|
||
auto uri_string = TRY(encoded_uri_component.to_deprecated_string(vm));
|
||
|
||
// 2. Let preserveEscapeSet be the empty String.
|
||
// 3. Return ? Decode(componentString, preserveEscapeSet).
|
||
auto decoded = TRY(decode(vm, uri_string, ""sv));
|
||
return PrimitiveString::create(vm, move(decoded));
|
||
}
|
||
|
||
// 19.2.6.3 encodeURI ( uri ), https://tc39.es/ecma262/#sec-encodeuri-uri
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::encode_uri)
|
||
{
|
||
auto uri = vm.argument(0);
|
||
|
||
// 1. Let uriString be ? ToString(uri).
|
||
auto uri_string = TRY(uri.to_deprecated_string(vm));
|
||
|
||
// 2. Let extraUnescaped be ";/?:@&=+$,#".
|
||
// 3. Return ? Encode(uriString, extraUnescaped).
|
||
auto encoded = TRY(encode(vm, uri_string, ";/?:@&=+$,abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.!~*'()#"sv));
|
||
return PrimitiveString::create(vm, move(encoded));
|
||
}
|
||
|
||
// 19.2.6.4 encodeURIComponent ( uriComponent ), https://tc39.es/ecma262/#sec-encodeuricomponent-uricomponent
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::encode_uri_component)
|
||
{
|
||
auto uri_component = vm.argument(0);
|
||
|
||
// 1. Let componentString be ? ToString(uriComponent).
|
||
auto uri_string = TRY(uri_component.to_deprecated_string(vm));
|
||
|
||
// 2. Let extraUnescaped be the empty String.
|
||
// 3. Return ? Encode(componentString, extraUnescaped).
|
||
auto encoded = TRY(encode(vm, uri_string, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.!~*'()"sv));
|
||
return PrimitiveString::create(vm, move(encoded));
|
||
}
|
||
|
||
// B.2.1.1 escape ( string ), https://tc39.es/ecma262/#sec-escape-string
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::escape)
|
||
{
|
||
// 1. Set string to ? ToString(string).
|
||
auto string = TRY(vm.argument(0).to_deprecated_string(vm));
|
||
|
||
// 3. Let R be the empty String.
|
||
StringBuilder escaped;
|
||
|
||
// 4. Let unescapedSet be the string-concatenation of the ASCII word characters and "@*+-./".
|
||
auto unescaped_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./"sv;
|
||
|
||
// 2. Let length be the length of string.
|
||
// 5. Let k be 0.
|
||
// 6. Repeat, while k < length,
|
||
for (auto code_point : TRY_OR_THROW_OOM(vm, utf8_to_utf16(string))) {
|
||
// a. Let char be the code unit at index k within string.
|
||
|
||
// b. If unescapedSet contains char, then
|
||
// NOTE: We know unescapedSet is ASCII-only, so ensure we have an ASCII codepoint before casting to char.
|
||
if (is_ascii(code_point) && unescaped_set.contains(static_cast<char>(code_point))) {
|
||
// i. Let S be the String value containing the single code unit char.
|
||
escaped.append(code_point);
|
||
}
|
||
// c. Else,
|
||
// i. Let n be the numeric value of char.
|
||
// ii. If n < 256, then
|
||
else if (code_point < 256) {
|
||
// 1. Let hex be the String representation of n, formatted as an uppercase hexadecimal number.
|
||
// 2. Let S be the string-concatenation of "%" and ! StringPad(hex, 2𝔽, "0", start).
|
||
escaped.appendff("%{:02X}", code_point);
|
||
}
|
||
// iii. Else,
|
||
else {
|
||
// 1. Let hex be the String representation of n, formatted as an uppercase hexadecimal number.
|
||
// 2. Let S be the string-concatenation of "%u" and ! StringPad(hex, 4𝔽, "0", start).
|
||
escaped.appendff("%u{:04X}", code_point);
|
||
}
|
||
|
||
// d. Set R to the string-concatenation of R and S.
|
||
// e. Set k to k + 1.
|
||
}
|
||
|
||
// 7. Return R.
|
||
return PrimitiveString::create(vm, escaped.to_deprecated_string());
|
||
}
|
||
|
||
// B.2.1.2 unescape ( string ), https://tc39.es/ecma262/#sec-unescape-string
|
||
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::unescape)
|
||
{
|
||
// 1. Set string to ? ToString(string).
|
||
auto string = TRY(vm.argument(0).to_deprecated_string(vm));
|
||
|
||
// 2. Let length be the length of string.
|
||
ssize_t length = string.length();
|
||
|
||
// 3. Let R be the empty String.
|
||
StringBuilder unescaped(length);
|
||
|
||
// 4. Let k be 0.
|
||
// 5. Repeat, while k ≠ length,
|
||
for (auto k = 0; k < length; ++k) {
|
||
// a. Let c be the code unit at index k within string.
|
||
u32 code_point = string[k];
|
||
|
||
// b. If c is the code unit 0x0025 (PERCENT SIGN), then
|
||
if (code_point == '%') {
|
||
// i. Let hexEscape be the empty String.
|
||
// ii. Let skip be 0.
|
||
// iii. If k ≤ length - 6 and the code unit at index k + 1 within string is the code unit 0x0075 (LATIN SMALL LETTER U), then
|
||
if (k <= length - 6 && string[k + 1] == 'u' && is_ascii_hex_digit(string[k + 2]) && is_ascii_hex_digit(string[k + 3]) && is_ascii_hex_digit(string[k + 4]) && is_ascii_hex_digit(string[k + 5])) {
|
||
// 1. Set hexEscape to the substring of string from k + 2 to k + 6.
|
||
code_point = (parse_ascii_hex_digit(string[k + 2]) << 12) | (parse_ascii_hex_digit(string[k + 3]) << 8) | (parse_ascii_hex_digit(string[k + 4]) << 4) | parse_ascii_hex_digit(string[k + 5]);
|
||
|
||
// 2. Set skip to 5.
|
||
k += 5;
|
||
}
|
||
// iv. Else if k ≤ length - 3, then
|
||
else if (k <= length - 3 && is_ascii_hex_digit(string[k + 1]) && is_ascii_hex_digit(string[k + 2])) {
|
||
// 1. Set hexEscape to the substring of string from k + 1 to k + 3.
|
||
code_point = (parse_ascii_hex_digit(string[k + 1]) << 4) | parse_ascii_hex_digit(string[k + 2]);
|
||
|
||
// 2. Set skip to 2.
|
||
k += 2;
|
||
}
|
||
|
||
// v. If hexEscape can be interpreted as an expansion of HexDigits[~Sep], then
|
||
// 1. Let hexIntegerLiteral be the string-concatenation of "0x" and hexEscape.
|
||
// 2. Let n be ! ToNumber(hexIntegerLiteral).
|
||
// 3. Set c to the code unit whose value is ℝ(n).
|
||
// 4. Set k to k + skip.
|
||
// NOTE: All of this is already done in the branches above.
|
||
}
|
||
|
||
// c. Set R to the string-concatenation of R and c.
|
||
unescaped.append_code_point(code_point);
|
||
|
||
// d. Set k to k + 1.
|
||
}
|
||
|
||
// 6. Return R.
|
||
return PrimitiveString::create(vm, unescaped.to_deprecated_string());
|
||
}
|
||
|
||
}
|