
Rather than the very C-like API we currently have, accepting a void* and a length, let's take a Bytes object instead. In almost all existing cases, the compiler figures out the length.
383 lines
9.2 KiB
C++
383 lines
9.2 KiB
C++
/*
|
|
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ByteReader.h>
|
|
#include <AK/Endian.h>
|
|
#include <AK/Random.h>
|
|
#include <LibCrypto/Curves/X448.h>
|
|
|
|
namespace Crypto::Curves {
|
|
|
|
static constexpr u16 BITS = 448;
|
|
static constexpr u8 BYTES = 56;
|
|
static constexpr u8 WORDS = 14;
|
|
static constexpr u32 A24 = 39082;
|
|
|
|
static void import_state(u32* state, ReadonlyBytes data)
|
|
{
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
|
|
state[i] = AK::convert_between_host_and_little_endian(value);
|
|
}
|
|
}
|
|
|
|
static ErrorOr<ByteBuffer> export_state(u32* data)
|
|
{
|
|
auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 value = AK::convert_between_host_and_little_endian(data[i]);
|
|
ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
static void select(u32* state, u32* a, u32* b, u32 condition)
|
|
{
|
|
// If B < (2^448 - 2^224 + 1) then R = B, else R = A
|
|
u32 mask = condition - 1;
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
state[i] = (a[i] & mask) | (b[i] & ~mask);
|
|
}
|
|
}
|
|
|
|
static void set(u32* state, u32 value)
|
|
{
|
|
state[0] = value;
|
|
|
|
for (auto i = 1; i < WORDS; i++) {
|
|
state[i] = 0;
|
|
}
|
|
}
|
|
|
|
static void copy(u32* state, u32* value)
|
|
{
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
state[i] = value[i];
|
|
}
|
|
}
|
|
|
|
static void conditional_swap(u32* first, u32* second, u32 condition)
|
|
{
|
|
u32 mask = ~condition + 1;
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 temp = mask & (first[i] ^ second[i]);
|
|
first[i] ^= temp;
|
|
second[i] ^= temp;
|
|
}
|
|
}
|
|
|
|
static void modular_reduce(u32* state, u32* data, u32 a_high)
|
|
{
|
|
u64 temp = 1;
|
|
u32 other[WORDS];
|
|
|
|
// Compute B = A - (2^448 - 2^224 - 1)
|
|
for (auto i = 0; i < WORDS / 2; i++) {
|
|
temp += data[i];
|
|
other[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
temp += 1;
|
|
|
|
for (auto i = 7; i < WORDS; i++) {
|
|
temp += data[i];
|
|
other[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
auto condition = (a_high + (u32)temp - 1) & 1;
|
|
select(state, other, data, condition);
|
|
}
|
|
|
|
static void modular_multiply_single(u32* state, u32* first, u32 second)
|
|
{
|
|
// Compute R = (A * B) mod p
|
|
u64 temp = 0;
|
|
u64 carry = 0;
|
|
u32 output[WORDS];
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += (u64)first[i] * second;
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Fast modular reduction
|
|
carry = temp;
|
|
for (auto i = 0; i < WORDS / 2; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
temp += carry;
|
|
for (auto i = WORDS / 2; i < WORDS; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, output, (u32)temp);
|
|
}
|
|
|
|
static void modular_multiply(u32* state, u32* first, u32* second)
|
|
{
|
|
// Compute R = (A * B) mod p
|
|
|
|
u64 temp = 0;
|
|
u64 carry = 0;
|
|
u32 output[WORDS * 2];
|
|
|
|
// Comba's method
|
|
for (auto i = 0; i < WORDS * 2; i++) {
|
|
if (i < 14) {
|
|
for (auto j = 0; j <= i; j++) {
|
|
temp += (u64)first[j] * second[i - j];
|
|
carry += temp >> 32;
|
|
temp &= 0xFFFFFFFF;
|
|
}
|
|
} else {
|
|
for (auto j = i - 13; j < WORDS; j++) {
|
|
temp += (u64)first[j] * second[i - j];
|
|
carry += temp >> 32;
|
|
temp &= 0xFFFFFFFF;
|
|
}
|
|
}
|
|
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp = carry & 0xFFFFFFFF;
|
|
carry >>= 32;
|
|
}
|
|
|
|
// Fast modular reduction (first pass)
|
|
temp = 0;
|
|
for (auto i = 0; i < WORDS / 2; i++) {
|
|
temp += output[i];
|
|
temp += output[i + 14];
|
|
temp += output[i + 21];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
for (auto i = WORDS / 2; i < WORDS; i++) {
|
|
temp += output[i];
|
|
temp += output[i + 7];
|
|
temp += output[i + 14];
|
|
temp += output[i + 14];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Fast modular reduction (second pass)
|
|
carry = temp;
|
|
for (auto i = 0; i < WORDS / 2; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
temp += carry;
|
|
for (auto i = WORDS / 2; i < WORDS; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, output, (u32)temp);
|
|
}
|
|
|
|
static void modular_square(u32* state, u32* value)
|
|
{
|
|
// Compute R = (A ^ 2) mod p
|
|
modular_multiply(state, value, value);
|
|
}
|
|
|
|
static void modular_add(u32* state, u32* first, u32* second)
|
|
{
|
|
u64 temp = 0;
|
|
|
|
// Compute R = A + B
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += first[i];
|
|
temp += second[i];
|
|
state[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, state, (u32)temp);
|
|
}
|
|
|
|
static void modular_subtract(u32* state, u32* first, u32* second)
|
|
{
|
|
i64 temp = -1;
|
|
|
|
// Compute R = A + (2^448 - 2^224 - 1) - B
|
|
for (auto i = 0; i < 7; i++) {
|
|
temp += first[i];
|
|
temp -= second[i];
|
|
state[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
temp -= 1;
|
|
|
|
for (auto i = 7; i < 14; i++) {
|
|
temp += first[i];
|
|
temp -= second[i];
|
|
state[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
temp += 1;
|
|
|
|
modular_reduce(state, state, (u32)temp);
|
|
}
|
|
|
|
static void to_power_of_2n(u32* state, u32* value, u8 n)
|
|
{
|
|
// Compute R = (A ^ (2^n)) mod p
|
|
modular_square(state, value);
|
|
for (auto i = 1; i < n; i++) {
|
|
modular_square(state, state);
|
|
}
|
|
}
|
|
|
|
static void modular_multiply_inverse(u32* state, u32* value)
|
|
{
|
|
// Compute R = A^-1 mod p
|
|
u32 u[WORDS];
|
|
u32 v[WORDS];
|
|
|
|
modular_square(u, value);
|
|
modular_multiply(u, u, value);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 3);
|
|
modular_multiply(v, u, v);
|
|
to_power_of_2n(u, v, 6);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 13);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 27);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 55);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 111);
|
|
modular_multiply(v, u, v);
|
|
modular_square(u, v);
|
|
modular_multiply(u, u, value);
|
|
to_power_of_2n(u, u, 223);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_square(u, u);
|
|
modular_multiply(state, u, value);
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X448::generate_private_key()
|
|
{
|
|
auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
|
|
fill_with_random(buffer);
|
|
return buffer;
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X448::generate_public_key(ReadonlyBytes a)
|
|
{
|
|
u8 generator[BYTES] { 5 };
|
|
return compute_coordinate(a, { generator, BYTES });
|
|
}
|
|
|
|
// https://datatracker.ietf.org/doc/html/rfc7748#section-5
|
|
ErrorOr<ByteBuffer> X448::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
|
|
{
|
|
u32 k[WORDS] {};
|
|
u32 u[WORDS] {};
|
|
u32 x1[WORDS] {};
|
|
u32 x2[WORDS] {};
|
|
u32 z1[WORDS] {};
|
|
u32 z2[WORDS] {};
|
|
u32 t1[WORDS] {};
|
|
u32 t2[WORDS] {};
|
|
|
|
// Copy input to internal state
|
|
import_state(k, input_k);
|
|
|
|
// Set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1
|
|
k[0] &= 0xFFFFFFFC;
|
|
k[13] |= 0x80000000;
|
|
|
|
// Copy coordinate to internal state
|
|
import_state(u, input_u);
|
|
|
|
// Implementations MUST accept non-canonical values and process them as
|
|
// if they had been reduced modulo the field prime.
|
|
modular_reduce(u, u, 0);
|
|
|
|
set(x1, 1);
|
|
set(z1, 0);
|
|
copy(x2, u);
|
|
set(z2, 1);
|
|
|
|
// Montgomery ladder
|
|
u32 swap = 0;
|
|
for (auto i = BITS - 1; i >= 0; i--) {
|
|
u32 b = (k[i / 32] >> (i % 32)) & 1;
|
|
|
|
conditional_swap(x1, x2, swap ^ b);
|
|
conditional_swap(z1, z2, swap ^ b);
|
|
|
|
swap = b;
|
|
|
|
modular_add(t1, x2, z2);
|
|
modular_subtract(x2, x2, z2);
|
|
modular_add(z2, x1, z1);
|
|
modular_subtract(x1, x1, z1);
|
|
modular_multiply(t1, t1, x1);
|
|
modular_multiply(x2, x2, z2);
|
|
modular_square(z2, z2);
|
|
modular_square(x1, x1);
|
|
modular_subtract(t2, z2, x1);
|
|
modular_multiply_single(z1, t2, A24);
|
|
modular_add(z1, z1, x1);
|
|
modular_multiply(z1, z1, t2);
|
|
modular_multiply(x1, x1, z2);
|
|
modular_subtract(z2, t1, x2);
|
|
modular_square(z2, z2);
|
|
modular_multiply(z2, z2, u);
|
|
modular_add(x2, x2, t1);
|
|
modular_square(x2, x2);
|
|
}
|
|
|
|
conditional_swap(x1, x2, swap);
|
|
conditional_swap(z1, z2, swap);
|
|
|
|
// Retrieve affine representation
|
|
modular_multiply_inverse(u, z1);
|
|
modular_multiply(u, u, x1);
|
|
|
|
// Encode state for export
|
|
return export_state(u);
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X448::derive_premaster_key(ReadonlyBytes shared_point)
|
|
{
|
|
VERIFY(shared_point.size() == BYTES);
|
|
ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
|
|
return premaster_key;
|
|
}
|
|
|
|
}
|