ladybird/Userland/Libraries/LibJS/Bytecode/Interpreter.cpp
Andreas Kling 1d20380859 LibJS: Split the per-call-frame environment into lexical and variable
To better follow the spec, we need to distinguish between the current
execution context's lexical environment and variable environment.

This patch moves us to having two record pointers, although both of
them point at the same environment records for now.
2021-06-22 18:44:53 +02:00

202 lines
6.3 KiB
C++

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/Instruction.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/GlobalObject.h>
namespace JS::Bytecode {
static Interpreter* s_current;
Interpreter* Interpreter::current()
{
return s_current;
}
Interpreter::Interpreter(GlobalObject& global_object)
: m_vm(global_object.vm())
, m_global_object(global_object)
{
VERIFY(!s_current);
s_current = this;
}
Interpreter::~Interpreter()
{
VERIFY(s_current == this);
s_current = nullptr;
}
Value Interpreter::run(Executable const& executable, BasicBlock const* entry_point)
{
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable);
TemporaryChange restore_executable { m_current_executable, &executable };
vm().set_last_value(Badge<Interpreter> {}, {});
CallFrame global_call_frame;
if (vm().call_stack().is_empty()) {
global_call_frame.this_value = &global_object();
static FlyString global_execution_context_name = "(*BC* global execution context)";
global_call_frame.function_name = global_execution_context_name;
global_call_frame.lexical_environment = &global_object();
VERIFY(!vm().exception());
// FIXME: How do we know if we're in strict mode? Maybe the Bytecode::Block should know this?
// global_call_frame.is_strict_mode = ???;
vm().push_call_frame(global_call_frame, global_object());
VERIFY(!vm().exception());
}
auto block = entry_point ?: &executable.basic_blocks.first();
if (m_manually_entered_frames) {
VERIFY(registers().size() >= executable.number_of_registers);
} else {
m_register_windows.append(make<RegisterWindow>());
registers().resize(executable.number_of_registers);
registers()[Register::global_object_index] = Value(&global_object());
}
for (;;) {
Bytecode::InstructionStreamIterator pc(block->instruction_stream());
bool will_jump = false;
bool will_return = false;
while (!pc.at_end()) {
auto& instruction = *pc;
instruction.execute(*this);
if (vm().exception()) {
m_saved_exception = {};
if (m_unwind_contexts.is_empty())
break;
auto& unwind_context = m_unwind_contexts.last();
if (unwind_context.handler) {
block = unwind_context.handler;
unwind_context.handler = nullptr;
accumulator() = vm().exception()->value();
vm().clear_exception();
will_jump = true;
} else if (unwind_context.finalizer) {
block = unwind_context.finalizer;
m_unwind_contexts.take_last();
will_jump = true;
m_saved_exception = Handle<Exception>::create(vm().exception());
vm().clear_exception();
}
}
if (m_pending_jump.has_value()) {
block = m_pending_jump.release_value();
will_jump = true;
break;
}
if (!m_return_value.is_empty()) {
will_return = true;
break;
}
++pc;
}
if (will_return)
break;
if (pc.at_end() && !will_jump)
break;
if (vm().exception())
break;
}
dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable);
if constexpr (JS_BYTECODE_DEBUG) {
for (size_t i = 0; i < registers().size(); ++i) {
String value_string;
if (registers()[i].is_empty())
value_string = "(empty)";
else
value_string = registers()[i].to_string_without_side_effects();
dbgln("[{:3}] {}", i, value_string);
}
}
vm().set_last_value(Badge<Interpreter> {}, accumulator());
if (!m_manually_entered_frames)
m_register_windows.take_last();
auto return_value = m_return_value.value_or(js_undefined());
m_return_value = {};
// NOTE: The return value from a called function is put into $0 in the caller context.
if (!m_register_windows.is_empty())
m_register_windows.last()[0] = return_value;
if (vm().call_stack().size() == 1)
vm().pop_call_frame();
vm().finish_execution_generation();
return return_value;
}
void Interpreter::enter_unwind_context(Optional<Label> handler_target, Optional<Label> finalizer_target)
{
m_unwind_contexts.empend(handler_target.has_value() ? &handler_target->block() : nullptr, finalizer_target.has_value() ? &finalizer_target->block() : nullptr);
}
void Interpreter::leave_unwind_context()
{
m_unwind_contexts.take_last();
}
void Interpreter::continue_pending_unwind(Label const& resume_label)
{
if (!m_saved_exception.is_null()) {
vm().set_exception(*m_saved_exception.cell());
m_saved_exception = {};
} else {
jump(resume_label);
}
}
AK::Array<OwnPtr<PassManager>, static_cast<UnderlyingType<Interpreter::OptimizationLevel>>(Interpreter::OptimizationLevel::__Count)> Interpreter::s_optimization_pipelines {};
Bytecode::PassManager& Interpreter::optimization_pipeline(Interpreter::OptimizationLevel level)
{
auto underlying_level = to_underlying(level);
VERIFY(underlying_level <= to_underlying(Interpreter::OptimizationLevel::__Count));
auto& entry = s_optimization_pipelines[underlying_level];
if (entry)
return *entry;
auto pm = make<PassManager>();
if (level == OptimizationLevel::Default) {
pm->add<Passes::GenerateCFG>();
pm->add<Passes::UnifySameBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::MergeBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::UnifySameBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::MergeBlocks>();
pm->add<Passes::GenerateCFG>();
pm->add<Passes::PlaceBlocks>();
} else {
VERIFY_NOT_REACHED();
}
auto& passes = *pm;
entry = move(pm);
return passes;
}
}