ladybird/Libraries/LibWeb/CSS/Interpolation.cpp
Glenn Skrzypczak 0d15cc4672 LibWeb/Animation: Fall back to discrete animation in more cases
Use discrete animation when the number of components or the types
of corresponding components do not match. This commit does not cover
all cases, but adds FIXME comments in the appropriate places.
2024-11-25 18:10:24 +01:00

646 lines
30 KiB
C++

/*
* Copyright (c) 2018-2023, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021, the SerenityOS developers.
* Copyright (c) 2021-2024, Sam Atkins <sam@ladybird.org>
* Copyright (c) 2024, Matthew Olsson <mattco@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Interpolation.h"
#include <LibWeb/CSS/PropertyID.h>
#include <LibWeb/CSS/StyleValues/AngleStyleValue.h>
#include <LibWeb/CSS/StyleValues/CSSColorValue.h>
#include <LibWeb/CSS/StyleValues/CSSKeywordValue.h>
#include <LibWeb/CSS/StyleValues/FrequencyStyleValue.h>
#include <LibWeb/CSS/StyleValues/IntegerStyleValue.h>
#include <LibWeb/CSS/StyleValues/LengthStyleValue.h>
#include <LibWeb/CSS/StyleValues/NumberStyleValue.h>
#include <LibWeb/CSS/StyleValues/PercentageStyleValue.h>
#include <LibWeb/CSS/StyleValues/RatioStyleValue.h>
#include <LibWeb/CSS/StyleValues/RectStyleValue.h>
#include <LibWeb/CSS/StyleValues/StyleValueList.h>
#include <LibWeb/CSS/StyleValues/TimeStyleValue.h>
#include <LibWeb/CSS/StyleValues/TransformationStyleValue.h>
#include <LibWeb/CSS/Transformation.h>
#include <LibWeb/DOM/Element.h>
#include <LibWeb/Layout/Node.h>
#include <LibWeb/Painting/PaintableBox.h>
namespace Web::CSS {
template<typename T>
static T interpolate_raw(T from, T to, float delta)
{
if constexpr (AK::Detail::IsSame<T, double>) {
return from + (to - from) * static_cast<double>(delta);
} else {
return static_cast<AK::Detail::RemoveCVReference<T>>(from + (to - from) * delta);
}
}
static NonnullRefPtr<CSSStyleValue const> with_keyword_values_resolved(DOM::Element& element, PropertyID property_id, CSSStyleValue const& value)
{
if (!value.is_keyword())
return value;
switch (value.as_keyword().keyword()) {
case CSS::Keyword::Initial:
case CSS::Keyword::Unset:
return property_initial_value(element.realm(), property_id);
case CSS::Keyword::Inherit:
return CSS::StyleComputer::get_inherit_value(element.realm(), property_id, &element);
default:
break;
}
return value;
}
ValueComparingRefPtr<CSSStyleValue const> interpolate_property(DOM::Element& element, PropertyID property_id, CSSStyleValue const& a_from, CSSStyleValue const& a_to, float delta)
{
auto from = with_keyword_values_resolved(element, property_id, a_from);
auto to = with_keyword_values_resolved(element, property_id, a_to);
auto animation_type = animation_type_from_longhand_property(property_id);
switch (animation_type) {
case AnimationType::ByComputedValue:
return interpolate_value(element, from, to, delta);
case AnimationType::None:
return to;
case AnimationType::Custom: {
if (property_id == PropertyID::Transform) {
if (auto interpolated_transform = interpolate_transform(element, from, to, delta))
return *interpolated_transform;
// https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
// In some cases, an animation might cause a transformation matrix to be singular or non-invertible.
// For example, an animation in which scale moves from 1 to -1. At the time when the matrix is in
// such a state, the transformed element is not rendered.
return {};
}
if (property_id == PropertyID::BoxShadow)
return interpolate_box_shadow(element, from, to, delta);
// FIXME: Handle all custom animatable properties
[[fallthrough]];
}
// FIXME: Handle repeatable-list animatable properties
case AnimationType::RepeatableList:
case AnimationType::Discrete:
default:
return delta >= 0.5f ? to : from;
}
}
// https://drafts.csswg.org/css-transitions/#transitionable
bool property_values_are_transitionable(PropertyID property_id, CSSStyleValue const& old_value, CSSStyleValue const& new_value)
{
// When comparing the before-change style and after-change style for a given property,
// the property values are transitionable if they have an animation type that is neither not animatable nor discrete.
auto animation_type = animation_type_from_longhand_property(property_id);
if (animation_type == AnimationType::None || animation_type == AnimationType::Discrete)
return false;
// FIXME: Even when a property is transitionable, the two values may not be. The spec uses the example of inset/non-inset shadows.
(void)old_value;
(void)new_value;
return true;
}
// A null return value means the interpolated matrix was not invertible or otherwise invalid
RefPtr<CSSStyleValue const> interpolate_transform(DOM::Element& element, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
{
// Note that the spec uses column-major notation, so all the matrix indexing is reversed.
static constexpr auto make_transformation = [](TransformationStyleValue const& transformation) -> AK::Optional<Transformation> {
AK::Vector<TransformValue> values;
for (auto const& value : transformation.values()) {
switch (value->type()) {
case CSSStyleValue::Type::Angle:
values.append(AngleOrCalculated { value->as_angle().angle() });
break;
case CSSStyleValue::Type::Math:
values.append(LengthPercentage { value->as_math() });
break;
case CSSStyleValue::Type::Length:
values.append(LengthPercentage { value->as_length().length() });
break;
case CSSStyleValue::Type::Percentage:
values.append(LengthPercentage { value->as_percentage().percentage() });
break;
case CSSStyleValue::Type::Number:
values.append(NumberPercentage { Number(Number::Type::Number, value->as_number().number()) });
break;
default:
return {};
}
}
return Transformation { transformation.transform_function(), move(values) };
};
static constexpr auto transformation_style_value_to_matrix = [](DOM::Element& element, TransformationStyleValue const& value) -> Optional<FloatMatrix4x4> {
auto transformation = make_transformation(value);
if (!transformation.has_value())
return {};
Optional<Painting::PaintableBox const&> paintable_box;
if (auto layout_node = element.layout_node()) {
if (auto paintable = layout_node->first_paintable(); paintable && is<Painting::PaintableBox>(paintable))
paintable_box = *static_cast<Painting::PaintableBox*>(paintable);
}
if (auto matrix = transformation->to_matrix(paintable_box); !matrix.is_error())
return matrix.value();
return {};
};
static constexpr auto style_value_to_matrix = [](DOM::Element& element, CSSStyleValue const& value) -> FloatMatrix4x4 {
if (value.is_transformation())
return transformation_style_value_to_matrix(element, value.as_transformation()).value_or(FloatMatrix4x4::identity());
// This encompasses both the allowed value "none" and any invalid values
if (!value.is_value_list())
return FloatMatrix4x4::identity();
auto matrix = FloatMatrix4x4::identity();
for (auto const& value_element : value.as_value_list().values()) {
if (value_element->is_transformation()) {
if (auto value_matrix = transformation_style_value_to_matrix(element, value_element->as_transformation()); value_matrix.has_value())
matrix = matrix * value_matrix.value();
}
}
return matrix;
};
struct DecomposedValues {
FloatVector3 translation;
FloatVector3 scale;
FloatVector3 skew;
FloatVector4 rotation;
FloatVector4 perspective;
};
// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
static constexpr auto decompose = [](FloatMatrix4x4 matrix) -> Optional<DecomposedValues> {
// https://drafts.csswg.org/css-transforms-1/#supporting-functions
static constexpr auto combine = [](auto a, auto b, float ascl, float bscl) {
return FloatVector3 {
ascl * a[0] + bscl * b[0],
ascl * a[1] + bscl * b[1],
ascl * a[2] + bscl * b[2],
};
};
// Normalize the matrix.
if (matrix(3, 3) == 0.f)
return {};
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
matrix(i, j) /= matrix(3, 3);
// perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
auto perspective_matrix = matrix;
for (int i = 0; i < 3; i++)
perspective_matrix(3, i) = 0.f;
perspective_matrix(3, 3) = 1.f;
if (!perspective_matrix.is_invertible())
return {};
DecomposedValues values;
// First, isolate perspective.
if (matrix(3, 0) != 0.f || matrix(3, 1) != 0.f || matrix(3, 2) != 0.f) {
// rightHandSide is the right hand side of the equation.
// Note: It is the bottom side in a row-major matrix
FloatVector4 bottom_side = {
matrix(3, 0),
matrix(3, 1),
matrix(3, 2),
matrix(3, 3),
};
// Solve the equation by inverting perspectiveMatrix and multiplying
// rightHandSide by the inverse.
auto inverse_perspective_matrix = perspective_matrix.inverse();
auto transposed_inverse_perspective_matrix = inverse_perspective_matrix.transpose();
values.perspective = transposed_inverse_perspective_matrix * bottom_side;
} else {
// No perspective.
values.perspective = { 0.0, 0.0, 0.0, 1.0 };
}
// Next take care of translation
for (int i = 0; i < 3; i++)
values.translation[i] = matrix(i, 3);
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
FloatVector3 row[3];
for (int i = 0; i < 3; i++)
row[i] = { matrix(0, i), matrix(1, i), matrix(2, i) };
// Compute X scale factor and normalize first row.
values.scale[0] = row[0].length();
row[0].normalize();
// Compute XY shear factor and make 2nd row orthogonal to 1st.
values.skew[0] = row[0].dot(row[1]);
row[1] = combine(row[1], row[0], 1.f, -values.skew[0]);
// Now, compute Y scale and normalize 2nd row.
values.scale[1] = row[1].length();
row[1].normalize();
values.skew[0] /= values.scale[1];
// Compute XZ and YZ shears, orthogonalize 3rd row
values.skew[1] = row[0].dot(row[2]);
row[2] = combine(row[2], row[0], 1.f, -values.skew[1]);
values.skew[2] = row[1].dot(row[2]);
row[2] = combine(row[2], row[1], 1.f, -values.skew[2]);
// Next, get Z scale and normalize 3rd row.
values.scale[2] = row[2].length();
row[2].normalize();
values.skew[1] /= values.scale[2];
values.skew[2] /= values.scale[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
auto pdum3 = row[1].cross(row[2]);
if (row[0].dot(pdum3) < 0.f) {
for (int i = 0; i < 3; i++) {
values.scale[i] *= -1.f;
row[i][0] *= -1.f;
row[i][1] *= -1.f;
row[i][2] *= -1.f;
}
}
// Now, get the rotations out
values.rotation[0] = 0.5f * sqrt(max(1.f + row[0][0] - row[1][1] - row[2][2], 0.f));
values.rotation[1] = 0.5f * sqrt(max(1.f - row[0][0] + row[1][1] - row[2][2], 0.f));
values.rotation[2] = 0.5f * sqrt(max(1.f - row[0][0] - row[1][1] + row[2][2], 0.f));
values.rotation[3] = 0.5f * sqrt(max(1.f + row[0][0] + row[1][1] + row[2][2], 0.f));
if (row[2][1] > row[1][2])
values.rotation[0] = -values.rotation[0];
if (row[0][2] > row[2][0])
values.rotation[1] = -values.rotation[1];
if (row[1][0] > row[0][1])
values.rotation[2] = -values.rotation[2];
// FIXME: This accounts for the fact that the browser coordinate system is left-handed instead of right-handed.
// The reason for this is that the positive Y-axis direction points down instead of up. To fix this, we
// invert the Y axis. However, it feels like the spec pseudo-code above should have taken something like
// this into account, so we're probably doing something else wrong.
values.rotation[2] *= -1;
return values;
};
// https://drafts.csswg.org/css-transforms-2/#recomposing-to-a-3d-matrix
static constexpr auto recompose = [](DecomposedValues const& values) -> FloatMatrix4x4 {
auto matrix = FloatMatrix4x4::identity();
// apply perspective
for (int i = 0; i < 4; i++)
matrix(3, i) = values.perspective[i];
// apply translation
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 3; j++)
matrix(i, 3) += values.translation[j] * matrix(i, j);
}
// apply rotation
auto x = values.rotation[0];
auto y = values.rotation[1];
auto z = values.rotation[2];
auto w = values.rotation[3];
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
auto rotation_matrix = FloatMatrix4x4::identity();
rotation_matrix(0, 0) = 1.f - 2.f * (y * y + z * z);
rotation_matrix(1, 0) = 2.f * (x * y - z * w);
rotation_matrix(2, 0) = 2.f * (x * z + y * w);
rotation_matrix(0, 1) = 2.f * (x * y + z * w);
rotation_matrix(1, 1) = 1.f - 2.f * (x * x + z * z);
rotation_matrix(2, 1) = 2.f * (y * z - x * w);
rotation_matrix(0, 2) = 2.f * (x * z - y * w);
rotation_matrix(1, 2) = 2.f * (y * z + x * w);
rotation_matrix(2, 2) = 1.f - 2.f * (x * x + y * y);
matrix = matrix * rotation_matrix;
// apply skew
// temp is a identity 4x4 matrix initially
auto temp = FloatMatrix4x4::identity();
if (values.skew[2] != 0.f) {
temp(1, 2) = values.skew[2];
matrix = matrix * temp;
}
if (values.skew[1] != 0.f) {
temp(1, 2) = 0.f;
temp(0, 2) = values.skew[1];
matrix = matrix * temp;
}
if (values.skew[0] != 0.f) {
temp(0, 2) = 0.f;
temp(0, 1) = values.skew[0];
matrix = matrix * temp;
}
// apply scale
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++)
matrix(j, i) *= values.scale[i];
}
return matrix;
};
// https://drafts.csswg.org/css-transforms-2/#interpolation-of-decomposed-3d-matrix-values
static constexpr auto interpolate = [](DecomposedValues& from, DecomposedValues& to, float delta) -> DecomposedValues {
auto product = clamp(from.rotation.dot(to.rotation), -1.0f, 1.0f);
FloatVector4 interpolated_rotation;
if (fabsf(product) == 1.0f) {
interpolated_rotation = from.rotation;
} else {
auto theta = acos(product);
auto w = sin(delta * theta) / sqrtf(1.0f - product * product);
for (int i = 0; i < 4; i++) {
from.rotation[i] *= cos(delta * theta) - product * w;
to.rotation[i] *= w;
interpolated_rotation[i] = from.rotation[i] + to.rotation[i];
}
}
return {
interpolate_raw(from.translation, to.translation, delta),
interpolate_raw(from.scale, to.scale, delta),
interpolate_raw(from.skew, to.skew, delta),
interpolated_rotation,
interpolate_raw(from.perspective, to.perspective, delta),
};
};
auto from_matrix = style_value_to_matrix(element, from);
auto to_matrix = style_value_to_matrix(element, to);
auto from_decomposed = decompose(from_matrix);
auto to_decomposed = decompose(to_matrix);
if (!from_decomposed.has_value() || !to_decomposed.has_value())
return {};
auto interpolated_decomposed = interpolate(from_decomposed.value(), to_decomposed.value(), delta);
auto interpolated = recompose(interpolated_decomposed);
StyleValueVector values;
values.ensure_capacity(16);
for (int i = 0; i < 16; i++)
values.append(NumberStyleValue::create(static_cast<double>(interpolated(i % 4, i / 4))));
return StyleValueList::create({ TransformationStyleValue::create(TransformFunction::Matrix3d, move(values)) }, StyleValueList::Separator::Comma);
}
Color interpolate_color(Color from, Color to, float delta)
{
// https://drafts.csswg.org/css-color/#interpolation-space
// If the host syntax does not define what color space interpolation should take place in, it defaults to Oklab.
auto from_oklab = from.to_oklab();
auto to_oklab = to.to_oklab();
auto color = Color::from_oklab(
interpolate_raw(from_oklab.L, to_oklab.L, delta),
interpolate_raw(from_oklab.a, to_oklab.a, delta),
interpolate_raw(from_oklab.b, to_oklab.b, delta));
color.set_alpha(interpolate_raw(from.alpha(), to.alpha(), delta));
return color;
}
NonnullRefPtr<CSSStyleValue const> interpolate_box_shadow(DOM::Element& element, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
{
// https://drafts.csswg.org/css-backgrounds/#box-shadow
// Animation type: by computed value, treating none as a zero-item list and appending blank shadows
// (transparent 0 0 0 0) with a corresponding inset keyword as needed to match the longer list if
// the shorter list is otherwise compatible with the longer one
static constexpr auto process_list = [](CSSStyleValue const& value) {
StyleValueVector shadows;
if (value.is_value_list()) {
for (auto const& element : value.as_value_list().values()) {
if (element->is_shadow())
shadows.append(element);
}
} else if (value.is_shadow()) {
shadows.append(value);
} else if (!value.is_keyword() || value.as_keyword().keyword() != Keyword::None) {
VERIFY_NOT_REACHED();
}
return shadows;
};
static constexpr auto extend_list_if_necessary = [](StyleValueVector& values, StyleValueVector const& other) {
values.ensure_capacity(other.size());
for (size_t i = values.size(); i < other.size(); i++) {
values.unchecked_append(ShadowStyleValue::create(
CSSColorValue::create_from_color(Color::Transparent),
LengthStyleValue::create(Length::make_px(0)),
LengthStyleValue::create(Length::make_px(0)),
LengthStyleValue::create(Length::make_px(0)),
LengthStyleValue::create(Length::make_px(0)),
other[i]->as_shadow().placement()));
}
};
StyleValueVector from_shadows = process_list(from);
StyleValueVector to_shadows = process_list(to);
extend_list_if_necessary(from_shadows, to_shadows);
extend_list_if_necessary(to_shadows, from_shadows);
VERIFY(from_shadows.size() == to_shadows.size());
StyleValueVector result_shadows;
result_shadows.ensure_capacity(from_shadows.size());
for (size_t i = 0; i < from_shadows.size(); i++) {
auto const& from_shadow = from_shadows[i]->as_shadow();
auto const& to_shadow = to_shadows[i]->as_shadow();
auto result_shadow = ShadowStyleValue::create(
CSSColorValue::create_from_color(interpolate_color(from_shadow.color()->to_color({}), to_shadow.color()->to_color({}), delta)),
interpolate_value(element, from_shadow.offset_x(), to_shadow.offset_x(), delta),
interpolate_value(element, from_shadow.offset_y(), to_shadow.offset_y(), delta),
interpolate_value(element, from_shadow.blur_radius(), to_shadow.blur_radius(), delta),
interpolate_value(element, from_shadow.spread_distance(), to_shadow.spread_distance(), delta),
delta >= 0.5f ? to_shadow.placement() : from_shadow.placement());
result_shadows.unchecked_append(result_shadow);
}
return StyleValueList::create(move(result_shadows), StyleValueList::Separator::Comma);
}
NonnullRefPtr<CSSStyleValue const> interpolate_value(DOM::Element& element, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
{
if (from.type() != to.type()) {
// Handle mixed percentage and dimension types
// https://www.w3.org/TR/css-values-4/#mixed-percentages
struct NumericBaseTypeAndDefault {
CSSNumericType::BaseType base_type;
ValueComparingNonnullRefPtr<CSSStyleValue> default_value;
};
static constexpr auto numeric_base_type_and_default = [](CSSStyleValue const& value) -> Optional<NumericBaseTypeAndDefault> {
switch (value.type()) {
case CSSStyleValue::Type::Angle: {
static auto default_angle_value = AngleStyleValue::create(Angle::make_degrees(0));
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Angle, default_angle_value };
}
case CSSStyleValue::Type::Frequency: {
static auto default_frequency_value = FrequencyStyleValue::create(Frequency::make_hertz(0));
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Frequency, default_frequency_value };
}
case CSSStyleValue::Type::Length: {
static auto default_length_value = LengthStyleValue::create(Length::make_px(0));
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Length, default_length_value };
}
case CSSStyleValue::Type::Percentage: {
static auto default_percentage_value = PercentageStyleValue::create(Percentage { 0.0 });
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Percent, default_percentage_value };
}
case CSSStyleValue::Type::Time: {
static auto default_time_value = TimeStyleValue::create(Time::make_seconds(0));
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Time, default_time_value };
}
default:
return {};
}
};
static constexpr auto to_calculation_node = [](CSSStyleValue const& value) -> NonnullOwnPtr<CalculationNode> {
switch (value.type()) {
case CSSStyleValue::Type::Angle:
return NumericCalculationNode::create(value.as_angle().angle());
case CSSStyleValue::Type::Frequency:
return NumericCalculationNode::create(value.as_frequency().frequency());
case CSSStyleValue::Type::Length:
return NumericCalculationNode::create(value.as_length().length());
case CSSStyleValue::Type::Percentage:
return NumericCalculationNode::create(value.as_percentage().percentage());
case CSSStyleValue::Type::Time:
return NumericCalculationNode::create(value.as_time().time());
default:
VERIFY_NOT_REACHED();
}
};
auto from_base_type_and_default = numeric_base_type_and_default(from);
auto to_base_type_and_default = numeric_base_type_and_default(to);
if (from_base_type_and_default.has_value() && to_base_type_and_default.has_value() && (from_base_type_and_default->base_type == CSSNumericType::BaseType::Percent || to_base_type_and_default->base_type == CSSNumericType::BaseType::Percent)) {
// This is an interpolation from a numeric unit to a percentage, or vice versa. The trick here is to
// interpolate two separate values. For example, consider an interpolation from 30px to 80%. It's quite
// hard to understand how this interpolation works, but if instead we rewrite the values as "30px + 0%" and
// "0px + 80%", then it is very simple to understand; we just interpolate each component separately.
auto interpolated_from = interpolate_value(element, from, from_base_type_and_default->default_value, delta);
auto interpolated_to = interpolate_value(element, to_base_type_and_default->default_value, to, delta);
Vector<NonnullOwnPtr<CalculationNode>> values;
values.ensure_capacity(2);
values.unchecked_append(to_calculation_node(interpolated_from));
values.unchecked_append(to_calculation_node(interpolated_to));
auto calc_node = SumCalculationNode::create(move(values));
return CSSMathValue::create(move(calc_node), CSSNumericType { to_base_type_and_default->base_type, 1 });
}
return delta >= 0.5f ? to : from;
}
switch (from.type()) {
case CSSStyleValue::Type::Angle:
return AngleStyleValue::create(Angle::make_degrees(interpolate_raw(from.as_angle().angle().to_degrees(), to.as_angle().angle().to_degrees(), delta)));
case CSSStyleValue::Type::Color: {
Optional<Layout::NodeWithStyle const&> layout_node;
if (auto node = element.layout_node())
layout_node = *node;
return CSSColorValue::create_from_color(interpolate_color(from.to_color(layout_node), to.to_color(layout_node), delta));
}
case CSSStyleValue::Type::Integer:
return IntegerStyleValue::create(interpolate_raw(from.as_integer().integer(), to.as_integer().integer(), delta));
case CSSStyleValue::Type::Length: {
// FIXME: Absolutize values
auto const& from_length = from.as_length().length();
auto const& to_length = to.as_length().length();
return LengthStyleValue::create(Length(interpolate_raw(from_length.raw_value(), to_length.raw_value(), delta), from_length.type()));
}
case CSSStyleValue::Type::Number:
return NumberStyleValue::create(interpolate_raw(from.as_number().number(), to.as_number().number(), delta));
case CSSStyleValue::Type::Percentage:
return PercentageStyleValue::create(Percentage(interpolate_raw(from.as_percentage().percentage().value(), to.as_percentage().percentage().value(), delta)));
case CSSStyleValue::Type::Position: {
// https://www.w3.org/TR/css-values-4/#combine-positions
// FIXME: Interpolation of <position> is defined as the independent interpolation of each component (x, y) normalized as an offset from the top left corner as a <length-percentage>.
auto const& from_position = from.as_position();
auto const& to_position = to.as_position();
return PositionStyleValue::create(
interpolate_value(element, from_position.edge_x(), to_position.edge_x(), delta)->as_edge(),
interpolate_value(element, from_position.edge_y(), to_position.edge_y(), delta)->as_edge());
}
case CSSStyleValue::Type::Ratio: {
auto from_ratio = from.as_ratio().ratio();
auto to_ratio = to.as_ratio().ratio();
// The interpolation of a <ratio> is defined by converting each <ratio> to a number by dividing the first value
// by the second (so a ratio of 3 / 2 would become 1.5), taking the logarithm of that result (so the 1.5 would
// become approximately 0.176), then interpolating those values. The result during the interpolation is
// converted back to a <ratio> by inverting the logarithm, then interpreting the result as a <ratio> with the
// result as the first value and 1 as the second value.
auto from_number = log(from_ratio.value());
auto to_number = log(to_ratio.value());
auto interp_number = interpolate_raw(from_number, to_number, delta);
return RatioStyleValue::create(Ratio(pow(M_E, interp_number)));
}
case CSSStyleValue::Type::Rect: {
auto from_rect = from.as_rect().rect();
auto to_rect = to.as_rect().rect();
if (from_rect.top_edge.is_auto() != to_rect.top_edge.is_auto() || from_rect.right_edge.is_auto() != to_rect.right_edge.is_auto() || from_rect.bottom_edge.is_auto() != to_rect.bottom_edge.is_auto() || from_rect.left_edge.is_auto() != to_rect.left_edge.is_auto()) {
return delta >= 0.5f ? to : from;
}
// FIXME: Absolutize values
return RectStyleValue::create({
Length(interpolate_raw(from_rect.top_edge.raw_value(), to_rect.top_edge.raw_value(), delta), from_rect.top_edge.type()),
Length(interpolate_raw(from_rect.right_edge.raw_value(), to_rect.right_edge.raw_value(), delta), from_rect.right_edge.type()),
Length(interpolate_raw(from_rect.bottom_edge.raw_value(), to_rect.bottom_edge.raw_value(), delta), from_rect.bottom_edge.type()),
Length(interpolate_raw(from_rect.left_edge.raw_value(), to_rect.left_edge.raw_value(), delta), from_rect.left_edge.type()),
});
}
case CSSStyleValue::Type::Transformation:
VERIFY_NOT_REACHED();
case CSSStyleValue::Type::ValueList: {
auto const& from_list = from.as_value_list();
auto const& to_list = to.as_value_list();
if (from_list.size() != to_list.size())
return delta >= 0.5f ? to : from;
// FIXME: If the number of components or the types of corresponding components do not match,
// or if any component value uses discrete animation and the two corresponding values do not match,
// then the property values combine as discrete.
StyleValueVector interpolated_values;
interpolated_values.ensure_capacity(from_list.size());
for (size_t i = 0; i < from_list.size(); ++i)
interpolated_values.append(interpolate_value(element, from_list.values()[i], to_list.values()[i], delta));
return StyleValueList::create(move(interpolated_values), from_list.separator());
}
default:
return delta >= 0.5f ? to : from;
}
}
}