ladybird/Userland/Libraries/LibJS/Runtime/Value.h
davidot 151447bdf7 LibJS: Move Object::invoke to Value::invoke and fix it for primitives
This is a tiny difference and only changes anything for primitives in
strict mode. However this is tested in test262 and can be noticed by
overriding toString of primitive values.

This does now require one to wrap an object in a Value to call invoke
but all code using invoke has been migrated.
2021-08-09 17:33:14 +01:00

414 lines
11 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/BitCast.h>
#include <AK/Format.h>
#include <AK/Forward.h>
#include <AK/Function.h>
#include <AK/Result.h>
#include <AK/String.h>
#include <AK/Types.h>
#include <LibJS/Forward.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <math.h>
// 2 ** 53 - 1
static constexpr double MAX_ARRAY_LIKE_INDEX = 9007199254740991.0;
// Unique bit representation of negative zero (only sign bit set)
static constexpr u64 NEGATIVE_ZERO_BITS = ((u64)1 << 63);
namespace JS {
class Value {
public:
enum class Type {
Empty,
Undefined,
Null,
Int32,
Double,
String,
Object,
Boolean,
Symbol,
Accessor,
BigInt,
};
enum class PreferredType {
Default,
String,
Number,
};
bool is_empty() const { return m_type == Type::Empty; }
bool is_undefined() const { return m_type == Type::Undefined; }
bool is_null() const { return m_type == Type::Null; }
bool is_number() const { return m_type == Type::Int32 || m_type == Type::Double; }
bool is_string() const { return m_type == Type::String; }
bool is_object() const { return m_type == Type::Object; }
bool is_boolean() const { return m_type == Type::Boolean; }
bool is_symbol() const { return m_type == Type::Symbol; }
bool is_accessor() const { return m_type == Type::Accessor; };
bool is_bigint() const { return m_type == Type::BigInt; };
bool is_nullish() const { return is_null() || is_undefined(); }
bool is_cell() const { return is_string() || is_accessor() || is_object() || is_bigint() || is_symbol(); }
bool is_array(GlobalObject&) const;
bool is_function() const;
bool is_constructor() const;
bool is_regexp(GlobalObject&) const;
bool is_nan() const { return is_number() && __builtin_isnan(as_double()); }
bool is_infinity() const { return is_number() && __builtin_isinf(as_double()); }
bool is_positive_infinity() const { return is_number() && __builtin_isinf_sign(as_double()) > 0; }
bool is_negative_infinity() const { return is_number() && __builtin_isinf_sign(as_double()) < 0; }
bool is_positive_zero() const { return is_number() && bit_cast<u64>(as_double()) == 0; }
bool is_negative_zero() const { return is_number() && bit_cast<u64>(as_double()) == NEGATIVE_ZERO_BITS; }
bool is_integral_number() const { return is_finite_number() && trunc(as_double()) == as_double(); }
bool is_finite_number() const
{
if (!is_number())
return false;
auto number = as_double();
return !__builtin_isnan(number) && !__builtin_isinf(number);
}
Value()
: m_type(Type::Empty)
{
}
explicit Value(bool value)
: m_type(Type::Boolean)
{
m_value.as_bool = value;
}
explicit Value(double value)
{
bool is_negative_zero = bit_cast<u64>(value) == NEGATIVE_ZERO_BITS;
if (value >= NumericLimits<i32>::min() && value <= NumericLimits<i32>::max() && trunc(value) == value && !is_negative_zero) {
m_type = Type::Int32;
m_value.as_i32 = static_cast<i32>(value);
} else {
m_type = Type::Double;
m_value.as_double = value;
}
}
explicit Value(unsigned long value)
{
if (value > NumericLimits<i32>::max()) {
m_value.as_double = static_cast<double>(value);
m_type = Type::Double;
} else {
m_value.as_i32 = static_cast<i32>(value);
m_type = Type::Int32;
}
}
explicit Value(unsigned value)
{
if (value > NumericLimits<i32>::max()) {
m_value.as_double = static_cast<double>(value);
m_type = Type::Double;
} else {
m_value.as_i32 = static_cast<i32>(value);
m_type = Type::Int32;
}
}
explicit Value(i32 value)
: m_type(Type::Int32)
{
m_value.as_i32 = value;
}
Value(const Object* object)
: m_type(object ? Type::Object : Type::Null)
{
m_value.as_object = const_cast<Object*>(object);
}
Value(const PrimitiveString* string)
: m_type(Type::String)
{
m_value.as_string = const_cast<PrimitiveString*>(string);
}
Value(const Symbol* symbol)
: m_type(Type::Symbol)
{
m_value.as_symbol = const_cast<Symbol*>(symbol);
}
Value(const Accessor* accessor)
: m_type(Type::Accessor)
{
m_value.as_accessor = const_cast<Accessor*>(accessor);
}
Value(const BigInt* bigint)
: m_type(Type::BigInt)
{
m_value.as_bigint = const_cast<BigInt*>(bigint);
}
explicit Value(Type type)
: m_type(type)
{
}
Type type() const { return m_type; }
double as_double() const
{
VERIFY(is_number());
if (m_type == Type::Int32)
return m_value.as_i32;
return m_value.as_double;
}
bool as_bool() const
{
VERIFY(type() == Type::Boolean);
return m_value.as_bool;
}
Object& as_object()
{
VERIFY(type() == Type::Object);
return *m_value.as_object;
}
const Object& as_object() const
{
VERIFY(type() == Type::Object);
return *m_value.as_object;
}
PrimitiveString& as_string()
{
VERIFY(is_string());
return *m_value.as_string;
}
const PrimitiveString& as_string() const
{
VERIFY(is_string());
return *m_value.as_string;
}
Symbol& as_symbol()
{
VERIFY(is_symbol());
return *m_value.as_symbol;
}
const Symbol& as_symbol() const
{
VERIFY(is_symbol());
return *m_value.as_symbol;
}
Cell& as_cell()
{
VERIFY(is_cell());
return *m_value.as_cell;
}
Accessor& as_accessor()
{
VERIFY(is_accessor());
return *m_value.as_accessor;
}
BigInt& as_bigint()
{
VERIFY(is_bigint());
return *m_value.as_bigint;
}
Array& as_array();
FunctionObject& as_function();
i32 as_i32() const;
u32 as_u32() const;
u64 encoded() const { return m_value.encoded; }
String to_string(GlobalObject&, bool legacy_null_to_empty_string = false) const;
Vector<u16> to_utf16_string(GlobalObject&) const;
PrimitiveString* to_primitive_string(GlobalObject&);
Value to_primitive(GlobalObject&, PreferredType preferred_type = PreferredType::Default) const;
Object* to_object(GlobalObject&) const;
Value to_numeric(GlobalObject&) const;
Value to_number(GlobalObject&) const;
BigInt* to_bigint(GlobalObject&) const;
i64 to_bigint_int64(GlobalObject&) const;
u64 to_bigint_uint64(GlobalObject&) const;
double to_double(GlobalObject&) const;
StringOrSymbol to_property_key(GlobalObject&) const;
i32 to_i32(GlobalObject& global_object) const
{
if (m_type == Type::Int32)
return m_value.as_i32;
return to_i32_slow_case(global_object);
}
u32 to_u32(GlobalObject&) const;
i16 to_i16(GlobalObject&) const;
u16 to_u16(GlobalObject&) const;
i8 to_i8(GlobalObject&) const;
u8 to_u8(GlobalObject&) const;
u8 to_u8_clamp(GlobalObject&) const;
size_t to_length(GlobalObject&) const;
size_t to_index(GlobalObject&) const;
double to_integer_or_infinity(GlobalObject&) const;
bool to_boolean() const;
Value get(GlobalObject&, PropertyName const&) const;
FunctionObject* get_method(GlobalObject&, PropertyName const&) const;
String to_string_without_side_effects() const;
Value value_or(Value fallback) const
{
if (is_empty())
return fallback;
return *this;
}
String typeof() const;
bool operator==(Value const&) const;
template<typename... Args>
[[nodiscard]] ALWAYS_INLINE Value invoke(GlobalObject& global_object, PropertyName const& property_name, Args... args);
private:
Type m_type { Type::Empty };
[[nodiscard]] Value invoke_internal(GlobalObject& global_object, PropertyName const&, Optional<MarkedValueList> arguments);
i32 to_i32_slow_case(GlobalObject&) const;
union {
bool as_bool;
i32 as_i32;
double as_double;
PrimitiveString* as_string;
Symbol* as_symbol;
Object* as_object;
Cell* as_cell;
Accessor* as_accessor;
BigInt* as_bigint;
u64 encoded;
} m_value { .encoded = 0 };
};
inline Value js_undefined()
{
return Value(Value::Type::Undefined);
}
inline Value js_null()
{
return Value(Value::Type::Null);
}
inline Value js_nan()
{
return Value(NAN);
}
inline Value js_infinity()
{
return Value(INFINITY);
}
inline Value js_negative_infinity()
{
return Value(-INFINITY);
}
inline void Cell::Visitor::visit(Value value)
{
if (value.is_cell())
visit_impl(value.as_cell());
}
Value greater_than(GlobalObject&, Value lhs, Value rhs);
Value greater_than_equals(GlobalObject&, Value lhs, Value rhs);
Value less_than(GlobalObject&, Value lhs, Value rhs);
Value less_than_equals(GlobalObject&, Value lhs, Value rhs);
Value bitwise_and(GlobalObject&, Value lhs, Value rhs);
Value bitwise_or(GlobalObject&, Value lhs, Value rhs);
Value bitwise_xor(GlobalObject&, Value lhs, Value rhs);
Value bitwise_not(GlobalObject&, Value);
Value unary_plus(GlobalObject&, Value);
Value unary_minus(GlobalObject&, Value);
Value left_shift(GlobalObject&, Value lhs, Value rhs);
Value right_shift(GlobalObject&, Value lhs, Value rhs);
Value unsigned_right_shift(GlobalObject&, Value lhs, Value rhs);
Value add(GlobalObject&, Value lhs, Value rhs);
Value sub(GlobalObject&, Value lhs, Value rhs);
Value mul(GlobalObject&, Value lhs, Value rhs);
Value div(GlobalObject&, Value lhs, Value rhs);
Value mod(GlobalObject&, Value lhs, Value rhs);
Value exp(GlobalObject&, Value lhs, Value rhs);
Value in(GlobalObject&, Value lhs, Value rhs);
Value instance_of(GlobalObject&, Value lhs, Value rhs);
Value ordinary_has_instance(GlobalObject&, Value lhs, Value rhs);
bool abstract_eq(GlobalObject&, Value lhs, Value rhs);
bool strict_eq(Value lhs, Value rhs);
bool same_value(Value lhs, Value rhs);
bool same_value_zero(Value lhs, Value rhs);
bool same_value_non_numeric(Value lhs, Value rhs);
TriState abstract_relation(GlobalObject&, bool left_first, Value lhs, Value rhs);
inline bool Value::operator==(Value const& value) const { return same_value(*this, value); }
struct ValueTraits : public Traits<Value> {
static unsigned hash(Value value)
{
VERIFY(!value.is_empty());
if (value.is_string())
return value.as_string().string().hash();
if (value.is_bigint())
return value.as_bigint().big_integer().hash();
if (value.is_negative_zero())
value = Value(0);
return u64_hash(value.encoded()); // FIXME: Is this the best way to hash pointers, doubles & ints?
}
static bool equals(const Value a, const Value b)
{
return same_value_zero(a, b);
}
};
}
namespace AK {
template<>
struct Formatter<JS::Value> : Formatter<StringView> {
void format(FormatBuilder& builder, const JS::Value& value)
{
Formatter<StringView>::format(builder, value.is_empty() ? "<empty>" : value.to_string_without_side_effects());
}
};
}