ladybird/Userland/Libraries/LibAudio/FlacLoader.cpp
kleines Filmröllchen 14d330faba LibAudio: Avoid frequent read() calls in FLAC residual decode
Decoding the residual in FLAC subframes is by far the most I/O-heavy
operation in FLAC decoding, as the residual data makes up the majority
of subframe data in LPC subframes. As the residual consists of many
Rice-encoded numbers with different bit sizes for differently large
numbers, the residual decoder frequently reads only one or two bytes at
a time. As we use a normal FileInputStream, that directly translates to
many calls to the read() syscall. We can see that the I/O overhead while
FLAC decoding is quite large, and much time is spent in the read()
syscall's kernel code.

This is optimized by using a Buffered<FileInputStream> instead, leading
to 4K blocks being read at once and a large reduction in I/O overhead.

Benchmarking with the new abench utility gives a 15-20% speedup on
identical files, usually pushing FLAC decoding to 10-15x realtime speed
on common sample rates.
2021-11-28 13:33:51 -08:00

881 lines
32 KiB
C++

/*
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "FlacLoader.h"
#include "Buffer.h"
#include <AK/BitStream.h>
#include <AK/Debug.h>
#include <AK/FlyString.h>
#include <AK/Format.h>
#include <AK/Math.h>
#include <AK/ScopeGuard.h>
#include <AK/Stream.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <LibCore/File.h>
#include <LibCore/FileStream.h>
namespace Audio {
FlacLoaderPlugin::FlacLoaderPlugin(StringView path)
: m_file(Core::File::construct(path))
{
if (!m_file->open(Core::OpenMode::ReadOnly)) {
m_error_string = String::formatted("Can't open file: {}", m_file->error_string());
return;
}
auto maybe_stream = Core::InputFileStream::open_buffered(path);
if (maybe_stream.is_error()) {
m_error_string = "Can't open file stream";
return;
}
m_stream = make<FlacInputStream>(maybe_stream.release_value());
if (!m_stream) {
m_error_string = "Can't open file stream";
return;
}
m_valid = parse_header();
if (!m_valid)
return;
reset();
if (!m_valid)
return;
}
FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer)
{
m_stream = make<FlacInputStream>(InputMemoryStream(buffer));
if (!m_stream) {
m_error_string = String::formatted("Can't open memory stream");
return;
}
m_valid = parse_header();
if (!m_valid)
return;
reset();
if (!m_valid)
return;
}
bool FlacLoaderPlugin::sniff()
{
return m_valid;
}
bool FlacLoaderPlugin::parse_header()
{
bool ok = true;
InputBitStream bit_input = [&]() -> InputBitStream {
if (m_file) {
return InputBitStream(m_stream->get<Buffered<Core::InputFileStream>>());
}
return InputBitStream(m_stream->get<InputMemoryStream>());
}();
ScopeGuard clear_bit_input_errors([&bit_input] { bit_input.handle_any_error(); });
#define CHECK_OK(msg) \
do { \
if (!ok) { \
m_stream->handle_any_error(); \
m_error_string = String::formatted("Parsing failed: {}", msg); \
return {}; \
} \
} while (0)
// Magic number
u32 flac = static_cast<u32>(bit_input.read_bits_big_endian(32));
m_data_start_location += 4;
ok = ok && flac == 0x664C6143; // "flaC"
CHECK_OK("FLAC magic number");
// Receive the streaminfo block
FlacRawMetadataBlock streaminfo = next_meta_block(bit_input);
// next_meta_block sets the error string if something goes wrong
ok = ok && m_error_string.is_empty();
CHECK_OK(m_error_string);
ok = ok && (streaminfo.type == FlacMetadataBlockType::STREAMINFO);
CHECK_OK("First block type");
InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes());
InputBitStream streaminfo_data(streaminfo_data_memory);
ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); });
// STREAMINFO block
m_min_block_size = static_cast<u16>(streaminfo_data.read_bits_big_endian(16));
ok = ok && (m_min_block_size >= 16);
CHECK_OK("Minimum block size");
m_max_block_size = static_cast<u16>(streaminfo_data.read_bits_big_endian(16));
ok = ok && (m_max_block_size >= 16);
CHECK_OK("Maximum block size");
m_min_frame_size = static_cast<u32>(streaminfo_data.read_bits_big_endian(24));
m_max_frame_size = static_cast<u32>(streaminfo_data.read_bits_big_endian(24));
m_sample_rate = static_cast<u32>(streaminfo_data.read_bits_big_endian(20));
ok = ok && (m_sample_rate <= 655350);
CHECK_OK("Sample rate");
m_num_channels = static_cast<u8>(streaminfo_data.read_bits_big_endian(3)) + 1; // 0 ^= one channel
u8 bits_per_sample = static_cast<u8>(streaminfo_data.read_bits_big_endian(5)) + 1;
if (bits_per_sample == 8) {
// FIXME: Signed/Unsigned issues?
m_sample_format = PcmSampleFormat::Uint8;
} else if (bits_per_sample == 16) {
m_sample_format = PcmSampleFormat::Int16;
} else if (bits_per_sample == 24) {
m_sample_format = PcmSampleFormat::Int24;
} else if (bits_per_sample == 32) {
m_sample_format = PcmSampleFormat::Int32;
} else {
ok = false;
CHECK_OK("Sample bit depth");
}
m_total_samples = static_cast<u64>(streaminfo_data.read_bits_big_endian(36));
ok = ok && (m_total_samples > 0);
CHECK_OK("Number of samples");
// Parse checksum into a buffer first
Array<u8, 128 / 8> md5_checksum;
auto md5_bytes_read = streaminfo_data.read(md5_checksum);
ok = ok && (md5_bytes_read == md5_checksum.size());
CHECK_OK("MD5 Checksum");
md5_checksum.span().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
// Parse other blocks
// TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification.
// Especially the SEEKTABLE block may become useful in a more sophisticated version.
[[maybe_unused]] u16 meta_blocks_parsed = 1;
[[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
FlacRawMetadataBlock block = streaminfo;
while (!block.is_last_block) {
block = next_meta_block(bit_input);
++total_meta_blocks;
ok = ok && m_error_string.is_empty();
CHECK_OK(m_error_string);
}
if (m_stream->handle_any_error()) {
m_error_string = "Parsing failed: Stream";
return false;
}
if constexpr (AFLACLOADER_DEBUG) {
// HACK: u128 should be able to format itself
StringBuilder checksum_string;
for (unsigned int i = 0; i < md5_checksum.size(); ++i) {
checksum_string.appendff("{:0X}", md5_checksum[i]);
}
dbgln("Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast<double>(m_total_samples) / static_cast<double>(m_sample_rate), checksum_string.to_string(), m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
}
return true;
#undef CHECK_OK
}
FlacRawMetadataBlock FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input)
{
#define CHECK_IO_ERROR() \
do { \
if (bit_input.handle_any_error()) { \
m_error_string = "Read error"; \
return FlacRawMetadataBlock {}; \
} \
} while (0)
bool is_last_block = bit_input.read_bit_big_endian();
CHECK_IO_ERROR();
// The block type enum constants agree with the specification
FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7);
CHECK_IO_ERROR();
if (type == FlacMetadataBlockType::INVALID) {
m_error_string = "Invalid metadata block";
return FlacRawMetadataBlock {};
}
m_data_start_location += 1;
u32 block_length = static_cast<u32>(bit_input.read_bits_big_endian(24));
m_data_start_location += 3;
CHECK_IO_ERROR();
auto block_data_result = ByteBuffer::create_uninitialized(block_length);
if (!block_data_result.has_value()) {
m_error_string = "Out of memory";
return FlacRawMetadataBlock {};
}
auto block_data = block_data_result.release_value();
// Reads exactly the bytes necessary into the Bytes container
bit_input.read(block_data);
m_data_start_location += block_length;
CHECK_IO_ERROR();
return FlacRawMetadataBlock {
is_last_block,
type,
block_length,
block_data,
};
#undef CHECK_IO_ERROR
}
void FlacLoaderPlugin::reset()
{
seek(m_data_start_location);
m_current_frame.clear();
}
void FlacLoaderPlugin::seek(const int position)
{
if (!m_stream->seek(position)) {
m_error_string = String::formatted("Invalid seek position {}", position);
m_valid = false;
}
}
RefPtr<Buffer> FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
{
Vector<Sample> samples;
ssize_t remaining_samples = static_cast<ssize_t>(m_total_samples - m_loaded_samples);
if (remaining_samples <= 0) {
return nullptr;
}
size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
while (samples_to_read > 0) {
if (!m_current_frame.has_value()) {
next_frame();
if (!m_error_string.is_empty()) {
m_error_string = String::formatted("Frame parsing error: {}", m_error_string);
return nullptr;
}
}
samples.append(m_current_frame_data.take_first());
if (m_current_frame_data.is_empty()) {
m_current_frame.clear();
}
--samples_to_read;
}
m_loaded_samples += samples.size();
return Buffer::create_with_samples(move(samples));
}
void FlacLoaderPlugin::next_frame()
{
bool ok = true;
InputBitStream bit_stream = m_stream->bit_stream();
#define CHECK_OK(msg) \
do { \
if (!ok) { \
m_error_string = String::formatted("Frame parsing failed: {}", msg); \
bit_stream.align_to_byte_boundary(); \
bit_stream.handle_any_error(); \
dbgln_if(AFLACLOADER_DEBUG, "Crash in FLAC loader: next bytes are {:x}", bit_stream.read_bits_big_endian(32)); \
return; \
} \
} while (0)
#define CHECK_ERROR_STRING \
do { \
if (!m_error_string.is_null() && !m_error_string.is_empty()) { \
ok = false; \
CHECK_OK(m_error_string); \
} \
} while (0)
// TODO: Check the CRC-16 checksum (and others) by keeping track of read data
// FLAC frame sync code starts header
u16 sync_code = static_cast<u16>(bit_stream.read_bits_big_endian(14));
ok = ok && (sync_code == 0b11111111111110);
CHECK_OK("Sync code");
bool reserved_bit = bit_stream.read_bit_big_endian();
ok = ok && (reserved_bit == 0);
CHECK_OK("Reserved frame header bit");
[[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian();
u32 sample_count = convert_sample_count_code(static_cast<u8>(bit_stream.read_bits_big_endian(4)));
CHECK_ERROR_STRING;
u32 frame_sample_rate = convert_sample_rate_code(static_cast<u8>(bit_stream.read_bits_big_endian(4)));
CHECK_ERROR_STRING;
u8 channel_type_num = static_cast<u8>(bit_stream.read_bits_big_endian(4));
if (channel_type_num >= 0b1011) {
ok = false;
CHECK_OK("Channel assignment");
}
FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
PcmSampleFormat bit_depth = convert_bit_depth_code(static_cast<u8>(bit_stream.read_bits_big_endian(3)));
CHECK_ERROR_STRING;
reserved_bit = bit_stream.read_bit_big_endian();
ok = ok && (reserved_bit == 0);
CHECK_OK("Reserved frame header end bit");
// FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
m_current_sample_or_frame = read_utf8_char(bit_stream);
// Conditional header variables
if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
sample_count = static_cast<u32>(bit_stream.read_bits_big_endian(8)) + 1;
} else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
sample_count = static_cast<u32>(bit_stream.read_bits_big_endian(16)) + 1;
}
if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(8)) * 1000;
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(16));
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(16)) * 10;
}
// TODO: check header checksum, see above
[[maybe_unused]] u8 checksum = static_cast<u8>(bit_stream.read_bits(8));
dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
m_current_frame = FlacFrameHeader {
sample_count,
frame_sample_rate,
channel_type,
bit_depth,
};
u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
Vector<Vector<i32>> current_subframes;
current_subframes.ensure_capacity(subframe_count);
for (u8 i = 0; i < subframe_count; ++i) {
FlacSubframeHeader new_subframe = next_subframe_header(bit_stream, i);
CHECK_ERROR_STRING;
Vector<i32> subframe_samples = parse_subframe(new_subframe, bit_stream);
CHECK_ERROR_STRING;
current_subframes.append(move(subframe_samples));
}
bit_stream.align_to_byte_boundary();
// TODO: check checksum, see above
[[maybe_unused]] u16 footer_checksum = static_cast<u16>(bit_stream.read_bits_big_endian(16));
Vector<i32> left;
Vector<i32> right;
switch (channel_type) {
case FlacFrameChannelType::Mono:
left = right = current_subframes[0];
break;
case FlacFrameChannelType::Stereo:
// TODO mix together surround channels on each side?
case FlacFrameChannelType::StereoCenter:
case FlacFrameChannelType::Surround4p0:
case FlacFrameChannelType::Surround5p0:
case FlacFrameChannelType::Surround5p1:
case FlacFrameChannelType::Surround6p1:
case FlacFrameChannelType::Surround7p1:
left = current_subframes[0];
right = current_subframes[1];
break;
case FlacFrameChannelType::LeftSideStereo:
// channels are left (0) and side (1)
left = current_subframes[0];
right.ensure_capacity(left.size());
for (size_t i = 0; i < left.size(); ++i) {
// right = left - side
right.unchecked_append(left[i] - current_subframes[1][i]);
}
break;
case FlacFrameChannelType::RightSideStereo:
// channels are side (0) and right (1)
right = current_subframes[1];
left.ensure_capacity(right.size());
for (size_t i = 0; i < right.size(); ++i) {
// left = right + side
left.unchecked_append(right[i] + current_subframes[0][i]);
}
break;
case FlacFrameChannelType::MidSideStereo:
// channels are mid (0) and side (1)
left.ensure_capacity(current_subframes[0].size());
right.ensure_capacity(current_subframes[0].size());
for (size_t i = 0; i < current_subframes[0].size(); ++i) {
i64 mid = current_subframes[0][i];
i64 side = current_subframes[1][i];
mid *= 2;
// prevent integer division errors
left.unchecked_append(static_cast<i32>((mid + side) / 2));
right.unchecked_append(static_cast<i32>((mid - side) / 2));
}
break;
}
VERIFY(left.size() == right.size());
double sample_rescale = static_cast<double>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
m_current_frame_data.clear_with_capacity();
m_current_frame_data.ensure_capacity(left.size());
// zip together channels
for (size_t i = 0; i < left.size(); ++i) {
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
m_current_frame_data.unchecked_append(frame);
}
#undef CHECK_OK
#undef CHECK_ERROR_STRING
}
u32 FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
{
// single codes
switch (sample_count_code) {
case 0:
m_error_string = "Reserved block size";
return 0;
case 1:
return 192;
case 6:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
case 7:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
}
if (sample_count_code >= 2 && sample_count_code <= 5) {
return 576 * AK::exp2(sample_count_code - 2);
}
return 256 * AK::exp2(sample_count_code - 8);
}
u32 FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
{
switch (sample_rate_code) {
case 0:
return m_sample_rate;
case 1:
return 88200;
case 2:
return 176400;
case 3:
return 192000;
case 4:
return 8000;
case 5:
return 16000;
case 6:
return 22050;
case 7:
return 24000;
case 8:
return 32000;
case 9:
return 44100;
case 10:
return 48000;
case 11:
return 96000;
case 12:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
case 13:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
case 14:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
default:
m_error_string = "Invalid sample rate code";
return 0;
}
}
PcmSampleFormat FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
{
switch (bit_depth_code) {
case 0:
return m_sample_format;
case 1:
return PcmSampleFormat::Uint8;
case 4:
return PcmSampleFormat::Int16;
case 6:
return PcmSampleFormat::Int24;
case 3:
case 7:
m_error_string = "Reserved sample size";
return PcmSampleFormat::Float64;
default:
m_error_string = String::formatted("Unsupported sample size {}", bit_depth_code);
return PcmSampleFormat::Float64;
}
}
u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
{
if (channel_type <= 7)
return channel_type + 1;
return 2;
}
FlacSubframeHeader FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index)
{
u8 bits_per_sample = static_cast<u16>(pcm_bits_per_sample(m_current_frame->bit_depth));
// For inter-channel correlation, the side channel needs an extra bit for its samples
switch (m_current_frame->channels) {
case LeftSideStereo:
case MidSideStereo:
if (channel_index == 1) {
++bits_per_sample;
}
break;
case RightSideStereo:
if (channel_index == 0) {
++bits_per_sample;
}
break;
// "normal" channel types
default:
break;
}
// zero-bit padding
if (bit_stream.read_bit_big_endian() != 0) {
m_error_string = "Zero bit padding";
return {};
};
// subframe type (encoding)
u8 subframe_code = static_cast<u8>(bit_stream.read_bits_big_endian(6));
if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) {
m_error_string = "Subframe type";
return {};
}
FlacSubframeType subframe_type;
u8 order = 0;
// LPC has the highest bit set
if ((subframe_code & 0b100000) > 0) {
subframe_type = FlacSubframeType::LPC;
order = (subframe_code & 0b011111) + 1;
} else if ((subframe_code & 0b001000) > 0) {
// Fixed has the third-highest bit set
subframe_type = FlacSubframeType::Fixed;
order = (subframe_code & 0b000111);
} else {
subframe_type = (FlacSubframeType)subframe_code;
}
// wasted bits per sample (unary encoding)
bool has_wasted_bits = bit_stream.read_bit_big_endian();
u8 k = 0;
if (has_wasted_bits) {
bool current_k_bit = 0;
do {
current_k_bit = bit_stream.read_bit_big_endian();
++k;
} while (current_k_bit != 1);
}
return FlacSubframeHeader {
subframe_type,
order,
k,
bits_per_sample
};
}
Vector<i32> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input)
{
Vector<i32> samples;
switch (subframe_header.type) {
case FlacSubframeType::Constant: {
u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
samples.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0);
i32 constant = sign_extend(static_cast<u32>(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
samples.unchecked_append(constant);
}
break;
}
case FlacSubframeType::Fixed: {
dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
samples = decode_fixed_lpc(subframe_header, bit_input);
break;
}
case FlacSubframeType::Verbatim: {
dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
samples = decode_verbatim(subframe_header, bit_input);
break;
}
case FlacSubframeType::LPC: {
dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
samples = decode_custom_lpc(subframe_header, bit_input);
break;
}
default:
m_error_string = "Unhandled FLAC subframe type";
return {};
}
if (!m_error_string.is_empty()) {
return {};
}
for (size_t i = 0; i < samples.size(); ++i) {
samples[i] <<= subframe_header.wasted_bits_per_sample;
}
ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
return resampler.resample(samples);
}
// Decode a subframe that isn't actually encoded, usually seen in random data
Vector<i32> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
for (size_t i = 0; i < m_current_frame->sample_count; ++i) {
decoded.unchecked_append(sign_extend(
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
return decoded;
}
// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
Vector<i32> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
// precision of the coefficients
u8 lpc_precision = static_cast<u8>(bit_input.read_bits_big_endian(4));
if (lpc_precision == 0b1111) {
m_error_string = "Invalid linear predictor coefficient precision";
return {};
}
lpc_precision += 1;
// shift needed on the data (signed!)
i8 lpc_shift = sign_extend(static_cast<u32>(bit_input.read_bits_big_endian(5)), 5);
Vector<i32> coefficients;
coefficients.ensure_capacity(subframe.order);
// read coefficients
for (auto i = 0; i < subframe.order; ++i) {
u32 raw_coefficient = static_cast<u32>(bit_input.read_bits_big_endian(lpc_precision));
i32 coefficient = static_cast<i32>(sign_extend(raw_coefficient, lpc_precision));
coefficients.unchecked_append(coefficient);
}
dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);
// decode residual
decoded = decode_residual(decoded, subframe, bit_input);
// approximate the waveform with the predictor
for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
// (see below)
i64 sample = 0;
for (size_t t = 0; t < subframe.order; ++t) {
// It's really important that we compute in 64-bit land here.
// Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression.
// These will easily overflow 32 bits and cause strange white noise that apruptly stops intermittently (at the end of a frame).
// The simple fix of course is to do intermediate computations in 64 bits.
sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
}
decoded[i] += sample >> lpc_shift;
}
return decoded;
}
// Decode a subframe encoded with one of the fixed linear predictor codings
Vector<i32> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
decode_residual(decoded, subframe, bit_input);
if (!m_error_string.is_empty())
return {};
dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
switch (subframe.order) {
case 0:
// s_0(t) = 0
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 0;
break;
case 1:
// s_1(t) = s(t-1)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += decoded[i - 1];
break;
case 2:
// s_2(t) = 2s(t-1) - s(t-2)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
break;
case 3:
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
break;
case 4:
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
break;
default:
m_error_string = String::formatted("Unrecognized predictor order {}", subframe.order);
break;
}
return decoded;
}
// Decode the residual, the "error" between the function approximation and the actual audio data
Vector<i32> FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
u8 residual_mode = static_cast<u8>(bit_input.read_bits_big_endian(2));
u8 partition_order = static_cast<u8>(bit_input.read_bits_big_endian(4));
size_t partitions = 1 << partition_order;
if (residual_mode == FlacResidualMode::Rice4Bit) {
// decode a single Rice partition with four bits for the order k
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input);
decoded.extend(move(rice_partition));
}
} else if (residual_mode == FlacResidualMode::Rice5Bit) {
// five bits equivalent
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input);
decoded.extend(move(rice_partition));
}
} else {
m_error_string = "Reserved residual coding method";
return {};
}
return decoded;
}
// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
ALWAYS_INLINE Vector<i32> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
// Rice parameter / Exp-Golomb order
u8 k = static_cast<u8>(bit_input.read_bits_big_endian(partition_type));
u32 residual_sample_count;
if (partitions == 0)
residual_sample_count = m_current_frame->sample_count - subframe.order;
else
residual_sample_count = m_current_frame->sample_count / partitions;
if (partition_index == 0)
residual_sample_count -= subframe.order;
Vector<i32> rice_partition;
rice_partition.resize(residual_sample_count);
// escape code for unencoded binary partition
if (k == (1 << partition_type) - 1) {
u8 unencoded_bps = static_cast<u8>(bit_input.read_bits_big_endian(5));
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = static_cast<u8>(bit_input.read_bits_big_endian(unencoded_bps));
}
} else {
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input);
}
}
return rice_partition;
}
// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input)
{
u8 q = 0;
while (bit_input.read_bit_big_endian() == 0)
++q;
// least significant bits (remainder)
u32 rem = static_cast<u32>(bit_input.read_bits_big_endian(k));
u32 value = q << k | rem;
return rice_to_signed(value);
}
u64 read_utf8_char(InputStream& input)
{
u64 character;
u8 buffer = 0;
Bytes buffer_bytes { &buffer, 1 };
input.read(buffer_bytes);
u8 start_byte = buffer_bytes[0];
// Signal byte is zero: ASCII character
if ((start_byte & 0b10000000) == 0) {
return start_byte;
} else if ((start_byte & 0b11000000) == 0b10000000) {
// illegal continuation byte
return 0;
}
// This algorithm is too good and supports the theoretical max 0xFF start byte
u8 length = 1;
while (((start_byte << length) & 0b10000000) == 0b10000000)
++length;
u8 bits_from_start_byte = 8 - (length + 1);
u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
character = start_byte_bitmask & start_byte;
for (u8 i = length - 1; i > 0; --i) {
input.read(buffer_bytes);
u8 current_byte = buffer_bytes[0];
character = (character << 6) | (current_byte & 0b00111111);
}
return character;
}
i64 sign_extend(u32 n, u8 size)
{
// negative
if ((n & (1 << (size - 1))) > 0) {
return static_cast<i64>(n | (0xffffffff << size));
}
// positive
return n;
}
i32 rice_to_signed(u32 x)
{
// positive numbers are even, negative numbers are odd
// bitmask for conditionally inverting the entire number, thereby "negating" it
i32 sign = -static_cast<i32>(x & 1);
// copies the sign's sign onto the actual magnitude of x
return static_cast<i32>(sign ^ (x >> 1));
}
}