ladybird/Kernel/Interrupts/APIC.cpp
Tom 476f17b3f1 Kernel: Merge PurgeableVMObject into AnonymousVMObject
This implements memory commitments and lazy-allocation of committed
memory.
2021-01-01 23:43:44 +01:00

640 lines
20 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Arch/i386/ProcessorInfo.h>
#include <Kernel/IO.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/SpuriousInterruptHandler.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/TypedMapping.h>
//#define APIC_DEBUG
//#define APIC_SMP_DEBUG
#define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
#define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
#define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
#define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
#define APIC_ICR_DELIVERY_PENDING (1 << 12)
#define APIC_ENABLED (1 << 8)
#define APIC_BASE_MSR 0x1b
#define APIC_REG_EOI 0xb0
#define APIC_REG_LD 0xd0
#define APIC_REG_DF 0xe0
#define APIC_REG_SIV 0xf0
#define APIC_REG_TPR 0x80
#define APIC_REG_ICR_LOW 0x300
#define APIC_REG_ICR_HIGH 0x310
#define APIC_REG_LVT_TIMER 0x320
#define APIC_REG_LVT_THERMAL 0x330
#define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
#define APIC_REG_LVT_LINT0 0x350
#define APIC_REG_LVT_LINT1 0x360
#define APIC_REG_LVT_ERR 0x370
#define APIC_REG_TIMER_INITIAL_COUNT 0x380
#define APIC_REG_TIMER_CURRENT_COUNT 0x390
#define APIC_REG_TIMER_CONFIGURATION 0x3e0
namespace Kernel {
static AK::Singleton<APIC> s_apic;
class APICIPIInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICIPIInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICIPIInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
new APICIPIInterruptHandler(interrupt_number);
}
virtual void handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual const char* purpose() const override { return "IPI Handler"; }
virtual const char* controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
class APICErrInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICErrInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICErrInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
new APICErrInterruptHandler(interrupt_number);
}
virtual void handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual const char* purpose() const override { return "SMP Error Handler"; }
virtual const char* controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
bool APIC::initialized()
{
return s_apic.is_initialized();
}
APIC& APIC::the()
{
ASSERT(APIC::initialized());
return *s_apic;
}
void APIC::initialize()
{
ASSERT(!APIC::initialized());
s_apic.ensure_instance();
}
PhysicalAddress APIC::get_base()
{
u32 lo, hi;
MSR msr(APIC_BASE_MSR);
msr.get(lo, hi);
return PhysicalAddress(lo & 0xfffff000);
}
void APIC::set_base(const PhysicalAddress& base)
{
u32 hi = 0;
u32 lo = base.get() | 0x800;
MSR msr(APIC_BASE_MSR);
msr.set(lo, hi);
}
void APIC::write_register(u32 offset, u32 value)
{
*reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
}
u32 APIC::read_register(u32 offset)
{
return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
}
void APIC::set_lvt(u32 offset, u8 interrupt)
{
write_register(offset, (read_register(offset) & 0xffffffff) | interrupt);
}
void APIC::set_siv(u32 offset, u8 interrupt)
{
write_register(offset, (read_register(offset) & 0xffffffff) | interrupt | APIC_ENABLED);
}
void APIC::wait_for_pending_icr()
{
while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
IO::delay(200);
}
}
void APIC::write_icr(const ICRReg& icr)
{
write_register(APIC_REG_ICR_HIGH, icr.high());
write_register(APIC_REG_ICR_LOW, icr.low());
}
#define APIC_LVT_TIMER_ONESHOT 0
#define APIC_LVT_TIMER_PERIODIC (1 << 17)
#define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
#define APIC_LVT_MASKED (1 << 16)
#define APIC_LVT_TRIGGER_LEVEL (1 << 14)
#define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
extern "C" void apic_ap_start(void);
extern "C" u16 apic_ap_start_size;
extern "C" u32 ap_cpu_init_stacks;
extern "C" u32 ap_cpu_init_processor_info_array;
extern "C" u32 ap_cpu_init_cr0;
extern "C" u32 ap_cpu_init_cr3;
extern "C" u32 ap_cpu_init_cr4;
extern "C" u32 ap_cpu_gdtr;
extern "C" u32 ap_cpu_idtr;
void APIC::eoi()
{
write_register(APIC_REG_EOI, 0x0);
}
u8 APIC::spurious_interrupt_vector()
{
return IRQ_APIC_SPURIOUS;
}
#define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \
reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
+ reinterpret_cast<ptrdiff_t>(&varname) \
- reinterpret_cast<ptrdiff_t>(&apic_ap_start))
bool APIC::init_bsp()
{
// FIXME: Use the ACPI MADT table
if (!MSR::have())
return false;
// check if we support local apic
CPUID id(1);
if ((id.edx() & (1 << 9)) == 0)
return false;
PhysicalAddress apic_base = get_base();
#ifdef APIC_DEBUG
klog() << "Initializing APIC, base: " << apic_base;
#endif
set_base(apic_base);
m_apic_base = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Region::Access::Read | Region::Access::Write);
if (!m_apic_base) {
klog() << "APIC: Failed to allocate memory for APIC base";
return false;
}
auto rsdp = ACPI::StaticParsing::find_rsdp();
if (!rsdp.has_value()) {
klog() << "APIC: RSDP not found";
return false;
}
auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
if (madt_address.is_null()) {
klog() << "APIC: MADT table not found";
return false;
}
auto madt = map_typed<ACPI::Structures::MADT>(madt_address);
size_t entry_index = 0;
size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
auto* madt_entry = madt->entries;
while (entries_length > 0) {
size_t entry_length = madt_entry->length;
if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
#ifdef APIC_DEBUG
klog() << "APIC: AP found @ MADT entry " << entry_index << ", Processor Id: " << String::format("%02x", plapic_entry->acpi_processor_id)
<< " APIC Id: " << String::format("%02x", plapic_entry->apic_id) << " Flags: " << String::format("%08x", plapic_entry->flags);
#endif
m_processor_cnt++;
if ((plapic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
}
madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
entries_length -= entry_length;
entry_index++;
}
if (m_processor_enabled_cnt < 1)
m_processor_enabled_cnt = 1;
if (m_processor_cnt < 1)
m_processor_cnt = 1;
klog() << "APIC Processors found: " << m_processor_cnt << ", enabled: " << m_processor_enabled_cnt;
enable(0);
return true;
}
void APIC::do_boot_aps()
{
ASSERT(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Copy the APIC startup code and variables to P0x00008000
// Also account for the data appended to:
// * aps_to_enable u32 values for ap_cpu_init_stacks
// * aps_to_enable u32 values for ap_cpu_init_processor_info_array
auto apic_startup_region = MM.allocate_kernel_region_identity(PhysicalAddress(0x8000), PAGE_ROUND_UP(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))), {}, Region::Access::Read | Region::Access::Write | Region::Access::Execute);
memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
// Allocate enough stacks for all APs
Vector<OwnPtr<Region>> apic_ap_stacks;
for (u32 i = 0; i < aps_to_enable; i++) {
auto stack_region = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Region::Access::Read | Region::Access::Write, false, AllocationStrategy::AllocateNow, true);
if (!stack_region) {
klog() << "APIC: Failed to allocate stack for AP #" << i;
return;
}
stack_region->set_stack(true);
apic_ap_stacks.append(move(stack_region));
}
// Store pointers to all stacks for the APs to use
auto ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
ASSERT(aps_to_enable == apic_ap_stacks.size());
for (size_t i = 0; i < aps_to_enable; i++) {
ap_stack_array[i] = apic_ap_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
#ifdef APIC_DEBUG
klog() << "APIC: CPU[" << (i + 1) << "] stack at " << VirtualAddress(ap_stack_array[i]);
#endif
}
// Allocate Processor structures for all APs and store the pointer to the data
m_ap_processor_info.resize(aps_to_enable);
for (size_t i = 0; i < aps_to_enable; i++)
m_ap_processor_info[i] = make<Processor>();
auto ap_processor_info_array = &ap_stack_array[aps_to_enable];
for (size_t i = 0; i < aps_to_enable; i++) {
ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
#ifdef APIC_DEBUG
klog() << "APIC: CPU[" << (i + 1) << "] Processor at " << VirtualAddress(ap_processor_info_array[i]);
#endif
}
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
// Store the BSP's CR3 value for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
// Store the BSP's GDT and IDT for the APs to use
const auto& gdtr = Processor::current().get_gdtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
const auto& idtr = get_idtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
// Store the BSP's CR0 and CR4 values for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
// Create an idle thread for each processor. We have to do this here
// because we won't be able to send FlushTLB messages, so we have to
// have all memory set up for the threads so that when the APs are
// starting up, they can access all the memory properly
m_ap_idle_threads.resize(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++)
m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
#ifdef APIC_DEBUG
klog() << "APIC: Starting " << aps_to_enable << " AP(s)";
#endif
// INIT
write_icr(ICRReg(0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));
IO::delay(10 * 1000);
for (int i = 0; i < 2; i++) {
// SIPI
write_icr(ICRReg(0x08, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf)); // start execution at P8000
IO::delay(200);
}
// Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
#ifdef APIC_DEBUG
klog() << "APIC: Waiting for " << aps_to_enable << " AP(s) to finish initialization...";
#endif
do {
// Wait a little bit
IO::delay(200);
} while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
}
#ifdef APIC_DEBUG
klog() << "APIC: " << m_processor_enabled_cnt << " processors are initialized and running";
#endif
}
void APIC::boot_aps()
{
if (m_processor_enabled_cnt <= 1)
return;
// We split this into another call because do_boot_aps() will cause
// MM calls upon exit, and we don't want to call smp_enable before that
do_boot_aps();
// Enable SMP, which means IPIs may now be sent
Processor::smp_enable();
#ifdef APIC_DEBUG
dbg() << "All processors initialized and waiting, trigger all to continue";
#endif
// Now trigger all APs to continue execution (need to do this after
// the regions have been freed so that we don't trigger IPIs
m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
}
void APIC::enable(u32 cpu)
{
if (cpu >= 8) {
// TODO: x2apic support?
klog() << "SMP support is currently limited to 8 CPUs!";
Processor::halt();
}
u32 apic_id = (1u << cpu);
write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (apic_id << 24)); // TODO: only if not in x2apic mode
// read it back to make sure it's actually set
apic_id = read_register(APIC_REG_LD) >> 24;
Processor::current().info().set_apic_id(apic_id);
#ifdef APIC_DEBUG
klog() << "Enabling local APIC for cpu #" << cpu << " apic id: " << apic_id;
#endif
if (cpu == 0) {
SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
// set error interrupt vector
set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
// register IPI interrupt vector
APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
}
// set spurious interrupt vector
set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
// local destination mode (flat mode)
write_register(APIC_REG_DF, 0xf0000000);
write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
write_register(APIC_REG_TPR, 0);
}
Thread* APIC::get_idle_thread(u32 cpu) const
{
ASSERT(cpu > 0);
return m_ap_idle_threads[cpu - 1];
}
void APIC::init_finished(u32 cpu)
{
// This method is called once the boot stack is no longer needed
ASSERT(cpu > 0);
ASSERT(cpu < m_processor_enabled_cnt);
// Since we're waiting on other APs here, we shouldn't have the
// scheduler lock
ASSERT(!g_scheduler_lock.own_lock());
// Notify the BSP that we are done initializing. It will unmap the startup data at P8000
m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
#ifdef APIC_DEBUG
klog() << "APIC: cpu #" << cpu << " initialized, waiting for all others";
#endif
// The reason we're making all APs wait until the BSP signals them is that
// we don't want APs to trigger IPIs (e.g. through MM) while the BSP
// is unable to process them
while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
IO::delay(200);
}
#ifdef APIC_DEBUG
klog() << "APIC: cpu #" << cpu << " continues, all others are initialized";
#endif
// do_boot_aps() freed memory, so we need to update our tlb
Processor::flush_entire_tlb_local();
// Now enable all the interrupts
APIC::the().enable(cpu);
}
void APIC::broadcast_ipi()
{
#ifdef APIC_SMP_DEBUG
klog() << "SMP: Broadcast IPI from cpu #" << Processor::current().id();
#endif
wait_for_pending_icr();
write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));
}
void APIC::send_ipi(u32 cpu)
{
auto& proc = Processor::current();
#ifdef APIC_SMP_DEBUG
klog() << "SMP: Send IPI from cpu #" << proc.id() << " to cpu #" << cpu;
#endif
ASSERT(cpu != proc.id());
ASSERT(cpu < 8);
wait_for_pending_icr();
write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand, 1u << cpu));
}
APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
{
if (!m_apic_base)
return nullptr;
// We should only initialize and calibrate the APIC timer once on the BSP!
ASSERT(Processor::current().id() == 0);
ASSERT(!m_apic_timer);
m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
return m_apic_timer;
}
void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
{
u32 flags = 0;
switch (timer_mode) {
case TimerMode::OneShot:
flags |= APIC_LVT_TIMER_ONESHOT;
break;
case TimerMode::Periodic:
flags |= APIC_LVT_TIMER_PERIODIC;
break;
case TimerMode::TSCDeadline:
flags |= APIC_LVT_TIMER_TSCDEADLINE;
break;
}
if (!enable)
flags |= APIC_LVT_MASKED;
write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
config &= ~0xf; // clear divisor (bits 0-3)
switch (get_timer_divisor()) {
case 1:
config |= (1 << 3) | 3;
break;
case 2:
break;
case 4:
config |= 1;
break;
case 8:
config |= 2;
break;
case 16:
config |= 3;
break;
case 32:
config |= (1 << 3);
break;
case 64:
config |= (1 << 3) | 1;
break;
case 128:
config |= (1 << 3) | 2;
break;
default:
ASSERT_NOT_REACHED();
}
write_register(APIC_REG_TIMER_CONFIGURATION, config);
if (timer_mode == TimerMode::Periodic)
write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
}
u32 APIC::get_timer_current_count()
{
return read_register(APIC_REG_TIMER_CURRENT_COUNT);
}
u32 APIC::get_timer_divisor()
{
return 16;
}
void APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
{
#ifdef APIC_SMP_DEBUG
klog() << "APIC IPI on cpu #" << Processor::current().id();
#endif
}
bool APICIPIInterruptHandler::eoi()
{
#ifdef APIC_SMP_DEBUG
klog() << "SMP: IPI eoi";
#endif
APIC::the().eoi();
return true;
}
void APICErrInterruptHandler::handle_interrupt(const RegisterState&)
{
klog() << "APIC: SMP error on cpu #" << Processor::current().id();
}
bool APICErrInterruptHandler::eoi()
{
APIC::the().eoi();
return true;
}
bool HardwareTimer<GenericInterruptHandler>::eoi()
{
APIC::the().eoi();
return true;
}
}