659 lines
21 KiB
C++
659 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2020, Matthew Olsson <matthewcolsson@gmail.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/StringBuilder.h>
|
|
#include <LibGfx/Painter.h>
|
|
#include <LibGfx/Path.h>
|
|
#include <LibWeb/DOM/Document.h>
|
|
#include <LibWeb/DOM/Event.h>
|
|
#include <LibWeb/Layout/SVGPathBox.h>
|
|
#include <LibWeb/SVG/SVGPathElement.h>
|
|
#include <ctype.h>
|
|
|
|
//#define PATH_DEBUG
|
|
|
|
namespace Web::SVG {
|
|
|
|
#ifdef PATH_DEBUG
|
|
static void print_instruction(const PathInstruction& instruction)
|
|
{
|
|
auto& data = instruction.data;
|
|
|
|
switch (instruction.type) {
|
|
case PathInstructionType::Move:
|
|
dbg() << "Move (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
|
|
break;
|
|
case PathInstructionType::ClosePath:
|
|
dbg() << "ClosePath (absolute=" << instruction.absolute << ")";
|
|
break;
|
|
case PathInstructionType::Line:
|
|
dbg() << "Line (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
|
|
break;
|
|
case PathInstructionType::HorizontalLine:
|
|
dbg() << "HorizontalLine (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
dbg() << " x=" << data[i];
|
|
break;
|
|
case PathInstructionType::VerticalLine:
|
|
dbg() << "VerticalLine (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
dbg() << " y=" << data[i];
|
|
break;
|
|
case PathInstructionType::Curve:
|
|
dbg() << "Curve (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 6)
|
|
dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x2=" << data[i + 2] << ", y2=" << data[i + 3] << "), (x=" << data[i + 4] << ", y=" << data[i + 5] << ")";
|
|
break;
|
|
case PathInstructionType::SmoothCurve:
|
|
dbg() << "SmoothCurve (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 4)
|
|
dbg() << " (x2=" << data[i] << ", y2=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")";
|
|
break;
|
|
case PathInstructionType::QuadraticBezierCurve:
|
|
dbg() << "QuadraticBezierCurve (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 4)
|
|
dbg() << " (x1=" << data[i] << ", y1=" << data[i + 1] << "), (x=" << data[i + 2] << ", y=" << data[i + 3] << ")";
|
|
break;
|
|
case PathInstructionType::SmoothQuadraticBezierCurve:
|
|
dbg() << "SmoothQuadraticBezierCurve (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 2)
|
|
dbg() << " x=" << data[i] << ", y=" << data[i + 1];
|
|
break;
|
|
case PathInstructionType::EllipticalArc:
|
|
dbg() << "EllipticalArc (absolute=" << instruction.absolute << ")";
|
|
for (size_t i = 0; i < data.size(); i += 7)
|
|
dbg() << " (rx=" << data[i] << ", ry=" << data[i + 1] << ") x-axis-rotation=" << data[i + 2] << ", large-arc-flag=" << data[i + 3] << ", sweep-flag=" << data[i + 4] << ", (x=" << data[i + 5] << ", y=" << data[i + 6] << ")";
|
|
break;
|
|
case PathInstructionType::Invalid:
|
|
dbgln("Invalid");
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
PathDataParser::PathDataParser(const String& source)
|
|
: m_source(source)
|
|
{
|
|
}
|
|
|
|
Vector<PathInstruction> PathDataParser::parse()
|
|
{
|
|
parse_whitespace();
|
|
while (!done())
|
|
parse_drawto();
|
|
if (!m_instructions.is_empty() && m_instructions[0].type != PathInstructionType::Move)
|
|
ASSERT_NOT_REACHED();
|
|
return m_instructions;
|
|
}
|
|
|
|
void PathDataParser::parse_drawto()
|
|
{
|
|
if (match('M') || match('m')) {
|
|
parse_moveto();
|
|
} else if (match('Z') || match('z')) {
|
|
parse_closepath();
|
|
} else if (match('L') || match('l')) {
|
|
parse_lineto();
|
|
} else if (match('H') || match('h')) {
|
|
parse_horizontal_lineto();
|
|
} else if (match('V') || match('v')) {
|
|
parse_vertical_lineto();
|
|
} else if (match('C') || match('c')) {
|
|
parse_curveto();
|
|
} else if (match('S') || match('s')) {
|
|
parse_smooth_curveto();
|
|
} else if (match('Q') || match('q')) {
|
|
parse_quadratic_bezier_curveto();
|
|
} else if (match('T') || match('t')) {
|
|
parse_smooth_quadratic_bezier_curveto();
|
|
} else if (match('A') || match('a')) {
|
|
parse_elliptical_arc();
|
|
} else {
|
|
dbg() << "PathDataParser::parse_drawto failed to match: '" << ch() << "'";
|
|
TODO();
|
|
}
|
|
}
|
|
|
|
void PathDataParser::parse_moveto()
|
|
{
|
|
bool absolute = consume() == 'M';
|
|
parse_whitespace();
|
|
for (auto& pair : parse_coordinate_pair_sequence())
|
|
m_instructions.append({ PathInstructionType::Move, absolute, pair });
|
|
}
|
|
|
|
void PathDataParser::parse_closepath()
|
|
{
|
|
bool absolute = consume() == 'Z';
|
|
parse_whitespace();
|
|
m_instructions.append({ PathInstructionType::ClosePath, absolute, {} });
|
|
}
|
|
|
|
void PathDataParser::parse_lineto()
|
|
{
|
|
bool absolute = consume() == 'L';
|
|
parse_whitespace();
|
|
for (auto& pair : parse_coordinate_pair_sequence())
|
|
m_instructions.append({ PathInstructionType::Line, absolute, pair });
|
|
}
|
|
|
|
void PathDataParser::parse_horizontal_lineto()
|
|
{
|
|
bool absolute = consume() == 'H';
|
|
parse_whitespace();
|
|
m_instructions.append({ PathInstructionType::HorizontalLine, absolute, parse_coordinate_sequence() });
|
|
}
|
|
|
|
void PathDataParser::parse_vertical_lineto()
|
|
{
|
|
bool absolute = consume() == 'V';
|
|
parse_whitespace();
|
|
m_instructions.append({ PathInstructionType::VerticalLine, absolute, parse_coordinate_sequence() });
|
|
}
|
|
|
|
void PathDataParser::parse_curveto()
|
|
{
|
|
bool absolute = consume() == 'C';
|
|
parse_whitespace();
|
|
|
|
while (true) {
|
|
m_instructions.append({ PathInstructionType::Curve, absolute, parse_coordinate_pair_triplet() });
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_coordinate())
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PathDataParser::parse_smooth_curveto()
|
|
{
|
|
bool absolute = consume() == 'S';
|
|
parse_whitespace();
|
|
|
|
while (true) {
|
|
m_instructions.append({ PathInstructionType::SmoothCurve, absolute, parse_coordinate_pair_double() });
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_coordinate())
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PathDataParser::parse_quadratic_bezier_curveto()
|
|
{
|
|
bool absolute = consume() == 'Q';
|
|
parse_whitespace();
|
|
|
|
while (true) {
|
|
m_instructions.append({ PathInstructionType::QuadraticBezierCurve, absolute, parse_coordinate_pair_double() });
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_coordinate())
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PathDataParser::parse_smooth_quadratic_bezier_curveto()
|
|
{
|
|
bool absolute = consume() == 'T';
|
|
parse_whitespace();
|
|
|
|
while (true) {
|
|
m_instructions.append({ PathInstructionType::SmoothQuadraticBezierCurve, absolute, parse_coordinate_pair() });
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_coordinate())
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PathDataParser::parse_elliptical_arc()
|
|
{
|
|
bool absolute = consume() == 'A';
|
|
parse_whitespace();
|
|
|
|
while (true) {
|
|
m_instructions.append({ PathInstructionType::EllipticalArc, absolute, parse_elliptical_arg_argument() });
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_coordinate())
|
|
break;
|
|
}
|
|
}
|
|
|
|
float PathDataParser::parse_coordinate()
|
|
{
|
|
return parse_sign() * parse_number();
|
|
}
|
|
|
|
Vector<float> PathDataParser::parse_coordinate_pair()
|
|
{
|
|
Vector<float> coordinates;
|
|
coordinates.append(parse_coordinate());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
coordinates.append(parse_coordinate());
|
|
return coordinates;
|
|
}
|
|
|
|
Vector<float> PathDataParser::parse_coordinate_sequence()
|
|
{
|
|
Vector<float> sequence;
|
|
while (true) {
|
|
sequence.append(parse_coordinate());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_comma_whitespace() && !match_coordinate())
|
|
break;
|
|
}
|
|
return sequence;
|
|
}
|
|
|
|
Vector<Vector<float>> PathDataParser::parse_coordinate_pair_sequence()
|
|
{
|
|
Vector<Vector<float>> sequence;
|
|
while (true) {
|
|
sequence.append(parse_coordinate_pair());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
if (!match_comma_whitespace() && !match_coordinate())
|
|
break;
|
|
}
|
|
return sequence;
|
|
}
|
|
|
|
Vector<float> PathDataParser::parse_coordinate_pair_double()
|
|
{
|
|
Vector<float> coordinates;
|
|
coordinates.append(parse_coordinate_pair());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
coordinates.append(parse_coordinate_pair());
|
|
return coordinates;
|
|
}
|
|
|
|
Vector<float> PathDataParser::parse_coordinate_pair_triplet()
|
|
{
|
|
Vector<float> coordinates;
|
|
coordinates.append(parse_coordinate_pair());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
coordinates.append(parse_coordinate_pair());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
coordinates.append(parse_coordinate_pair());
|
|
return coordinates;
|
|
}
|
|
|
|
Vector<float> PathDataParser::parse_elliptical_arg_argument()
|
|
{
|
|
Vector<float> numbers;
|
|
numbers.append(parse_number());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
numbers.append(parse_number());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
numbers.append(parse_number());
|
|
parse_comma_whitespace();
|
|
numbers.append(parse_flag());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
numbers.append(parse_flag());
|
|
if (match_comma_whitespace())
|
|
parse_comma_whitespace();
|
|
numbers.append(parse_coordinate_pair());
|
|
|
|
return numbers;
|
|
}
|
|
|
|
void PathDataParser::parse_whitespace(bool must_match_once)
|
|
{
|
|
bool matched = false;
|
|
while (!done() && match_whitespace()) {
|
|
consume();
|
|
matched = true;
|
|
}
|
|
|
|
ASSERT(!must_match_once || matched);
|
|
}
|
|
|
|
void PathDataParser::parse_comma_whitespace()
|
|
{
|
|
if (match(',')) {
|
|
consume();
|
|
parse_whitespace();
|
|
} else {
|
|
parse_whitespace(1);
|
|
if (match(','))
|
|
consume();
|
|
parse_whitespace();
|
|
}
|
|
}
|
|
|
|
float PathDataParser::parse_fractional_constant()
|
|
{
|
|
StringBuilder builder;
|
|
bool floating_point = false;
|
|
|
|
while (!done() && isdigit(ch()))
|
|
builder.append(consume());
|
|
|
|
if (match('.')) {
|
|
floating_point = true;
|
|
builder.append('.');
|
|
consume();
|
|
while (!done() && isdigit(ch()))
|
|
builder.append(consume());
|
|
} else {
|
|
ASSERT(builder.length() > 0);
|
|
}
|
|
|
|
if (floating_point)
|
|
return strtof(builder.to_string().characters(), nullptr);
|
|
return builder.to_string().to_int().value();
|
|
}
|
|
|
|
float PathDataParser::parse_number()
|
|
{
|
|
auto number = parse_fractional_constant();
|
|
if (match('e') || match('E'))
|
|
TODO();
|
|
return number;
|
|
}
|
|
|
|
float PathDataParser::parse_flag()
|
|
{
|
|
if (!match('0') && !match('1'))
|
|
ASSERT_NOT_REACHED();
|
|
return consume() - '0';
|
|
}
|
|
|
|
int PathDataParser::parse_sign()
|
|
{
|
|
if (match('-')) {
|
|
consume();
|
|
return -1;
|
|
}
|
|
if (match('+'))
|
|
consume();
|
|
return 1;
|
|
}
|
|
|
|
bool PathDataParser::match_whitespace() const
|
|
{
|
|
if (done())
|
|
return false;
|
|
char c = ch();
|
|
return c == 0x9 || c == 0x20 || c == 0xa || c == 0xc || c == 0xd;
|
|
}
|
|
|
|
bool PathDataParser::match_comma_whitespace() const
|
|
{
|
|
return match_whitespace() || match(',');
|
|
}
|
|
|
|
bool PathDataParser::match_coordinate() const
|
|
{
|
|
return !done() && (isdigit(ch()) || ch() == '-' || ch() == '+' || ch() == '.');
|
|
}
|
|
|
|
SVGPathElement::SVGPathElement(DOM::Document& document, const QualifiedName& qualified_name)
|
|
: SVGGeometryElement(document, qualified_name)
|
|
{
|
|
}
|
|
|
|
RefPtr<Layout::Node> SVGPathElement::create_layout_node()
|
|
{
|
|
auto style = document().style_resolver().resolve_style(*this);
|
|
if (style->display() == CSS::Display::None)
|
|
return nullptr;
|
|
return adopt(*new Layout::SVGPathBox(document(), *this, move(style)));
|
|
}
|
|
|
|
void SVGPathElement::parse_attribute(const FlyString& name, const String& value)
|
|
{
|
|
SVGGeometryElement::parse_attribute(name, value);
|
|
|
|
if (name == "d")
|
|
m_instructions = PathDataParser(value).parse();
|
|
}
|
|
|
|
Gfx::Path& SVGPathElement::get_path()
|
|
{
|
|
if (m_path.has_value())
|
|
return m_path.value();
|
|
|
|
Gfx::Path path;
|
|
|
|
for (auto& instruction : m_instructions) {
|
|
auto& absolute = instruction.absolute;
|
|
auto& data = instruction.data;
|
|
|
|
#ifdef PATH_DEBUG
|
|
print_instruction(instruction);
|
|
#endif
|
|
|
|
bool clear_last_control_point = true;
|
|
|
|
switch (instruction.type) {
|
|
case PathInstructionType::Move: {
|
|
Gfx::FloatPoint point = { data[0], data[1] };
|
|
if (absolute) {
|
|
path.move_to(point);
|
|
} else {
|
|
ASSERT(!path.segments().is_empty());
|
|
path.move_to(point + path.segments().last().point());
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::ClosePath:
|
|
path.close();
|
|
break;
|
|
case PathInstructionType::Line: {
|
|
Gfx::FloatPoint point = { data[0], data[1] };
|
|
if (absolute) {
|
|
path.line_to(point);
|
|
} else {
|
|
ASSERT(!path.segments().is_empty());
|
|
path.line_to(point + path.segments().last().point());
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::HorizontalLine: {
|
|
ASSERT(!path.segments().is_empty());
|
|
auto last_point = path.segments().last().point();
|
|
if (absolute) {
|
|
path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
|
|
} else {
|
|
path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::VerticalLine: {
|
|
ASSERT(!path.segments().is_empty());
|
|
auto last_point = path.segments().last().point();
|
|
if (absolute) {
|
|
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
|
|
} else {
|
|
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::EllipticalArc: {
|
|
double rx = data[0];
|
|
double ry = data[1];
|
|
double x_axis_rotation = data[2] * M_DEG2RAD;
|
|
double large_arc_flag = data[3];
|
|
double sweep_flag = data[4];
|
|
|
|
double x_axis_rotation_c = cos(x_axis_rotation);
|
|
double x_axis_rotation_s = sin(x_axis_rotation);
|
|
|
|
auto& last_point = path.segments().last().point();
|
|
|
|
Gfx::FloatPoint next_point;
|
|
|
|
if (absolute) {
|
|
next_point = { data[5], data[6] };
|
|
} else {
|
|
next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
|
|
}
|
|
|
|
// Step 1 of out-of-range radii correction
|
|
if (rx == 0.0 || ry == 0.0) {
|
|
path.line_to(next_point);
|
|
break;
|
|
}
|
|
|
|
// Step 2 of out-of-range radii correction
|
|
if (rx < 0)
|
|
rx *= -1.0;
|
|
if (ry < 0)
|
|
ry *= -1.0;
|
|
|
|
// Find (cx, cy), theta_1, theta_delta
|
|
// Step 1: Compute (x1', y1')
|
|
auto x_avg = (last_point.x() - next_point.x()) / 2.0f;
|
|
auto y_avg = (last_point.y() - next_point.y()) / 2.0f;
|
|
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
|
|
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
|
|
|
|
// Step 2: Compute (cx', cy')
|
|
double x1p_sq = pow(x1p, 2.0);
|
|
double y1p_sq = pow(y1p, 2.0);
|
|
double rx_sq = pow(rx, 2.0);
|
|
double ry_sq = pow(ry, 2.0);
|
|
|
|
// Step 3 of out-of-range radii correction
|
|
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
|
|
double multiplier;
|
|
|
|
if (lambda > 1.0) {
|
|
auto lambda_sqrt = sqrt(lambda);
|
|
rx *= lambda_sqrt;
|
|
ry *= lambda_sqrt;
|
|
multiplier = 0.0;
|
|
} else {
|
|
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
|
|
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
|
|
multiplier = sqrt(numerator / denominator);
|
|
}
|
|
|
|
if (large_arc_flag == sweep_flag)
|
|
multiplier *= -1.0;
|
|
|
|
double cxp = multiplier * rx * y1p / ry;
|
|
double cyp = multiplier * -ry * x1p / rx;
|
|
|
|
// Step 3: Compute (cx, cy) from (cx', cy')
|
|
x_avg = (last_point.x() + next_point.x()) / 2.0f;
|
|
y_avg = (last_point.y() + next_point.y()) / 2.0f;
|
|
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
|
|
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
|
|
|
|
double theta_1 = atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
|
|
double theta_2 = atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
|
|
|
|
auto theta_delta = theta_2 - theta_1;
|
|
|
|
if (sweep_flag == 0 && theta_delta > 0.0f) {
|
|
theta_delta -= M_TAU;
|
|
} else if (sweep_flag != 0 && theta_delta < 0) {
|
|
theta_delta += M_TAU;
|
|
}
|
|
|
|
path.elliptical_arc_to(next_point, { cx, cy }, { rx, ry }, x_axis_rotation, theta_1, theta_delta);
|
|
|
|
break;
|
|
}
|
|
case PathInstructionType::QuadraticBezierCurve: {
|
|
clear_last_control_point = false;
|
|
|
|
Gfx::FloatPoint through = { data[0], data[1] };
|
|
Gfx::FloatPoint point = { data[2], data[3] };
|
|
|
|
if (absolute) {
|
|
path.quadratic_bezier_curve_to(through, point);
|
|
m_previous_control_point = through;
|
|
} else {
|
|
ASSERT(!path.segments().is_empty());
|
|
auto last_point = path.segments().last().point();
|
|
auto control_point = through + last_point;
|
|
path.quadratic_bezier_curve_to(control_point, point + last_point);
|
|
m_previous_control_point = control_point;
|
|
}
|
|
break;
|
|
}
|
|
case PathInstructionType::SmoothQuadraticBezierCurve: {
|
|
clear_last_control_point = false;
|
|
|
|
ASSERT(!path.segments().is_empty());
|
|
auto last_point = path.segments().last().point();
|
|
|
|
if (m_previous_control_point.is_null()) {
|
|
m_previous_control_point = last_point;
|
|
}
|
|
|
|
auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
|
|
auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
|
|
auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
|
|
|
|
Gfx::FloatPoint end_point = { data[0], data[1] };
|
|
|
|
if (absolute) {
|
|
path.quadratic_bezier_curve_to(control_point, end_point);
|
|
} else {
|
|
path.quadratic_bezier_curve_to(control_point, end_point + last_point);
|
|
}
|
|
|
|
m_previous_control_point = control_point;
|
|
break;
|
|
}
|
|
|
|
case PathInstructionType::Curve:
|
|
case PathInstructionType::SmoothCurve:
|
|
// Instead of crashing the browser every time we come across an SVG
|
|
// with these path instructions, let's just skip them
|
|
continue;
|
|
case PathInstructionType::Invalid:
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
if (clear_last_control_point) {
|
|
m_previous_control_point = Gfx::FloatPoint {};
|
|
}
|
|
}
|
|
|
|
m_path = path;
|
|
return m_path.value();
|
|
}
|
|
|
|
}
|