ladybird/Userland/Libraries/LibWasm/AbstractMachine/AbstractMachine.cpp
Ali Mohammad Pur 6b50f23242 LibWasm+LibWeb: Sneak a JS::Completion into Wasm::Result
Imported functions in Wasm may throw JS exceptions, and we need to
preserve these exceptions so we can pass them to the calling JS code.

This also adds a `assert_wasm_result()` API to Result for cases where
only Wasm traps or values are expected (e.g. internal uses) to avoid
making LibWasm (pointlessly) handle JS exceptions that will never show
up in reality.
2023-02-26 10:54:23 +03:30

591 lines
24 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/BytecodeInterpreter.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/AbstractMachine/Interpreter.h>
#include <LibWasm/AbstractMachine/Validator.h>
#include <LibWasm/Types.h>
namespace Wasm {
Optional<FunctionAddress> Store::allocate(ModuleInstance& module, Module::Function const& function)
{
FunctionAddress address { m_functions.size() };
if (function.type().value() > module.types().size())
return {};
auto& type = module.types()[function.type().value()];
m_functions.empend(WasmFunction { type, module, function });
return address;
}
Optional<FunctionAddress> Store::allocate(HostFunction&& function)
{
FunctionAddress address { m_functions.size() };
m_functions.empend(HostFunction { move(function) });
return address;
}
Optional<TableAddress> Store::allocate(TableType const& type)
{
TableAddress address { m_tables.size() };
Vector<Optional<Reference>> elements;
elements.resize(type.limits().min());
m_tables.empend(TableInstance { type, move(elements) });
return address;
}
Optional<MemoryAddress> Store::allocate(MemoryType const& type)
{
MemoryAddress address { m_memories.size() };
auto instance = MemoryInstance::create(type);
if (instance.is_error())
return {};
m_memories.append(instance.release_value());
return address;
}
Optional<GlobalAddress> Store::allocate(GlobalType const& type, Value value)
{
GlobalAddress address { m_globals.size() };
m_globals.append(GlobalInstance { move(value), type.is_mutable() });
return address;
}
Optional<DataAddress> Store::allocate_data(Vector<u8> initializer)
{
DataAddress address { m_datas.size() };
m_datas.append(DataInstance { move(initializer) });
return address;
}
Optional<ElementAddress> Store::allocate(ValueType const& type, Vector<Reference> references)
{
ElementAddress address { m_elements.size() };
m_elements.append(ElementInstance { type, move(references) });
return address;
}
FunctionInstance* Store::get(FunctionAddress address)
{
auto value = address.value();
if (m_functions.size() <= value)
return nullptr;
return &m_functions[value];
}
TableInstance* Store::get(TableAddress address)
{
auto value = address.value();
if (m_tables.size() <= value)
return nullptr;
return &m_tables[value];
}
MemoryInstance* Store::get(MemoryAddress address)
{
auto value = address.value();
if (m_memories.size() <= value)
return nullptr;
return &m_memories[value];
}
GlobalInstance* Store::get(GlobalAddress address)
{
auto value = address.value();
if (m_globals.size() <= value)
return nullptr;
return &m_globals[value];
}
ElementInstance* Store::get(ElementAddress address)
{
auto value = address.value();
if (m_elements.size() <= value)
return nullptr;
return &m_elements[value];
}
DataInstance* Store::get(DataAddress address)
{
auto value = address.value();
if (m_datas.size() <= value)
return nullptr;
return &m_datas[value];
}
ErrorOr<void, ValidationError> AbstractMachine::validate(Module& module)
{
if (module.validation_status() != Module::ValidationStatus::Unchecked) {
if (module.validation_status() == Module::ValidationStatus::Valid)
return {};
return ValidationError { module.validation_error() };
}
auto result = Validator {}.validate(module);
if (result.is_error()) {
module.set_validation_error(result.error().error_string);
return result.release_error();
}
return {};
}
InstantiationResult AbstractMachine::instantiate(Module const& module, Vector<ExternValue> externs)
{
if (auto result = validate(const_cast<Module&>(module)); result.is_error())
return InstantiationError { DeprecatedString::formatted("Validation failed: {}", result.error()) };
auto main_module_instance_pointer = make<ModuleInstance>();
auto& main_module_instance = *main_module_instance_pointer;
Optional<InstantiationResult> instantiation_result;
module.for_each_section_of_type<TypeSection>([&](TypeSection const& section) {
main_module_instance.types() = section.types();
});
Vector<Value> global_values;
Vector<Vector<Reference>> elements;
ModuleInstance auxiliary_instance;
// FIXME: Check that imports/extern match
for (auto& entry : externs) {
if (auto* ptr = entry.get_pointer<GlobalAddress>())
auxiliary_instance.globals().append(*ptr);
}
BytecodeInterpreter interpreter;
module.for_each_section_of_type<GlobalSection>([&](auto& global_section) {
for (auto& entry : global_section.entries()) {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
entry.expression(),
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap())
instantiation_result = InstantiationError { DeprecatedString::formatted("Global value construction trapped: {}", result.trap().reason) };
else
global_values.append(result.values().first());
}
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
if (auto result = allocate_all_initial_phase(module, main_module_instance, externs, global_values); result.has_value())
return result.release_value();
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
for (auto& segment : section.segments()) {
Vector<Reference> references;
for (auto& entry : segment.init) {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
entry,
entry.instructions().size(),
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap()) {
instantiation_result = InstantiationError { DeprecatedString::formatted("Element construction trapped: {}", result.trap().reason) };
return IterationDecision::Continue;
}
for (auto& value : result.values()) {
if (!value.type().is_reference()) {
instantiation_result = InstantiationError { "Evaluated element entry is not a reference" };
return IterationDecision::Continue;
}
auto reference = value.to<Reference>();
if (!reference.has_value()) {
instantiation_result = InstantiationError { "Evaluated element entry does not contain a reference" };
return IterationDecision::Continue;
}
// FIXME: type-check the reference.
references.prepend(reference.release_value());
}
}
elements.append(move(references));
}
return IterationDecision::Continue;
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
if (auto result = allocate_all_final_phase(module, main_module_instance, elements); result.has_value())
return result.release_value();
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
size_t index = 0;
for (auto& segment : section.segments()) {
auto current_index = index;
++index;
auto active_ptr = segment.mode.get_pointer<ElementSection::Active>();
if (!active_ptr)
continue;
if (active_ptr->index.value() != 0) {
instantiation_result = InstantiationError { "Non-zero table referenced by active element segment" };
return IterationDecision::Break;
}
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
active_ptr->expression,
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap()) {
instantiation_result = InstantiationError { DeprecatedString::formatted("Element section initialisation trapped: {}", result.trap().reason) };
return IterationDecision::Break;
}
auto d = result.values().first().to<i32>();
if (!d.has_value()) {
instantiation_result = InstantiationError { "Element section initialisation returned invalid table initial offset" };
return IterationDecision::Break;
}
if (main_module_instance.tables().size() < 1) {
instantiation_result = InstantiationError { "Element section initialisation references nonexistent table" };
return IterationDecision::Break;
}
auto table_instance = m_store.get(main_module_instance.tables()[0]);
if (current_index >= main_module_instance.elements().size()) {
instantiation_result = InstantiationError { "Invalid element referenced by active element segment" };
return IterationDecision::Break;
}
auto elem_instance = m_store.get(main_module_instance.elements()[current_index]);
if (!table_instance || !elem_instance) {
instantiation_result = InstantiationError { "Invalid element referenced by active element segment" };
return IterationDecision::Break;
}
auto total_required_size = elem_instance->references().size() + d.value();
if (table_instance->type().limits().max().value_or(total_required_size) < total_required_size) {
instantiation_result = InstantiationError { "Table limit overflow in active element segment" };
return IterationDecision::Break;
}
if (table_instance->elements().size() < total_required_size)
table_instance->elements().resize(total_required_size);
size_t i = 0;
for (auto it = elem_instance->references().begin(); it < elem_instance->references().end(); ++i, ++it) {
table_instance->elements()[i + d.value()] = *it;
}
}
return IterationDecision::Continue;
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
module.for_each_section_of_type<DataSection>([&](DataSection const& data_section) {
for (auto& segment : data_section.data()) {
segment.value().visit(
[&](DataSection::Data::Active const& data) {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
main_module_instance,
Vector<Value> {},
data.offset,
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap()) {
instantiation_result = InstantiationError { DeprecatedString::formatted("Data section initialisation trapped: {}", result.trap().reason) };
return;
}
size_t offset = 0;
result.values().first().value().visit(
[&](auto const& value) { offset = value; },
[&](Reference const&) { instantiation_result = InstantiationError { "Data segment offset returned a reference"sv }; });
if (instantiation_result.has_value() && instantiation_result->is_error())
return;
if (main_module_instance.memories().size() <= data.index.value()) {
instantiation_result = InstantiationError {
DeprecatedString::formatted("Data segment referenced out-of-bounds memory ({}) of max {} entries",
data.index.value(), main_module_instance.memories().size())
};
return;
}
auto maybe_data_address = m_store.allocate_data(data.init);
if (!maybe_data_address.has_value()) {
instantiation_result = InstantiationError { "Failed to allocate a data instance for an active data segment"sv };
return;
}
main_module_instance.datas().append(*maybe_data_address);
if (data.init.is_empty())
return;
auto address = main_module_instance.memories()[data.index.value()];
if (auto instance = m_store.get(address)) {
if (auto max = instance->type().limits().max(); max.has_value()) {
if (*max * Constants::page_size < data.init.size() + offset) {
instantiation_result = InstantiationError {
DeprecatedString::formatted("Data segment attempted to write to out-of-bounds memory ({}) of max {} bytes",
data.init.size() + offset, instance->type().limits().max().value())
};
return;
}
}
if (instance->size() < data.init.size() + offset)
instance->grow(data.init.size() + offset - instance->size());
instance->data().overwrite(offset, data.init.data(), data.init.size());
}
},
[&](DataSection::Data::Passive const& passive) {
auto maybe_data_address = m_store.allocate_data(passive.init);
if (!maybe_data_address.has_value()) {
instantiation_result = InstantiationError { "Failed to allocate a data instance for a passive data segment"sv };
return;
}
main_module_instance.datas().append(*maybe_data_address);
});
}
});
module.for_each_section_of_type<StartSection>([&](StartSection const& section) {
auto& functions = main_module_instance.functions();
auto index = section.function().index();
if (functions.size() <= index.value()) {
instantiation_result = InstantiationError { DeprecatedString::formatted("Start section function referenced invalid index {} of max {} entries", index.value(), functions.size()) };
return;
}
invoke(functions[index.value()], {});
});
if (instantiation_result.has_value())
return instantiation_result.release_value();
return InstantiationResult { move(main_module_instance_pointer) };
}
Optional<InstantiationError> AbstractMachine::allocate_all_initial_phase(Module const& module, ModuleInstance& module_instance, Vector<ExternValue>& externs, Vector<Value>& global_values)
{
Optional<InstantiationError> result;
for (auto& entry : externs) {
entry.visit(
[&](FunctionAddress const& address) { module_instance.functions().append(address); },
[&](TableAddress const& address) { module_instance.tables().append(address); },
[&](MemoryAddress const& address) { module_instance.memories().append(address); },
[&](GlobalAddress const& address) { module_instance.globals().append(address); });
}
// FIXME: What if this fails?
for (auto& func : module.functions()) {
auto address = m_store.allocate(module_instance, func);
VERIFY(address.has_value());
module_instance.functions().append(*address);
}
module.for_each_section_of_type<TableSection>([&](TableSection const& section) {
for (auto& table : section.tables()) {
auto table_address = m_store.allocate(table.type());
VERIFY(table_address.has_value());
module_instance.tables().append(*table_address);
}
});
module.for_each_section_of_type<MemorySection>([&](MemorySection const& section) {
for (auto& memory : section.memories()) {
auto memory_address = m_store.allocate(memory.type());
VERIFY(memory_address.has_value());
module_instance.memories().append(*memory_address);
}
});
module.for_each_section_of_type<GlobalSection>([&](GlobalSection const& section) {
size_t index = 0;
for (auto& entry : section.entries()) {
auto address = m_store.allocate(entry.type(), move(global_values[index]));
VERIFY(address.has_value());
module_instance.globals().append(*address);
index++;
}
});
module.for_each_section_of_type<ExportSection>([&](ExportSection const& section) {
for (auto& entry : section.entries()) {
Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress, Empty> address {};
entry.description().visit(
[&](FunctionIndex const& index) {
if (module_instance.functions().size() > index.value())
address = FunctionAddress { module_instance.functions()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.functions().size());
},
[&](TableIndex const& index) {
if (module_instance.tables().size() > index.value())
address = TableAddress { module_instance.tables()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.tables().size());
},
[&](MemoryIndex const& index) {
if (module_instance.memories().size() > index.value())
address = MemoryAddress { module_instance.memories()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.memories().size());
},
[&](GlobalIndex const& index) {
if (module_instance.globals().size() > index.value())
address = GlobalAddress { module_instance.globals()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.globals().size());
});
if (address.has<Empty>()) {
result = InstantiationError { "An export could not be resolved" };
continue;
}
module_instance.exports().append(ExportInstance {
entry.name(),
move(address).downcast<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>(),
});
}
});
return result;
}
Optional<InstantiationError> AbstractMachine::allocate_all_final_phase(Module const& module, ModuleInstance& module_instance, Vector<Vector<Reference>>& elements)
{
module.for_each_section_of_type<ElementSection>([&](ElementSection const& section) {
size_t index = 0;
for (auto& segment : section.segments()) {
auto address = m_store.allocate(segment.type, move(elements[index]));
VERIFY(address.has_value());
module_instance.elements().append(*address);
index++;
}
});
return {};
}
Result AbstractMachine::invoke(FunctionAddress address, Vector<Value> arguments)
{
BytecodeInterpreter interpreter;
return invoke(interpreter, address, move(arguments));
}
Result AbstractMachine::invoke(Interpreter& interpreter, FunctionAddress address, Vector<Value> arguments)
{
Configuration configuration { m_store };
if (m_should_limit_instruction_count)
configuration.enable_instruction_count_limit();
return configuration.call(interpreter, address, move(arguments));
}
void Linker::link(ModuleInstance const& instance)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto it = instance.exports().find_if([&](auto& export_) { return export_.name() == import_.name; });
if (!it.is_end()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, it->value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
void Linker::link(HashMap<Linker::Name, ExternValue> const& exports)
{
populate();
if (m_unresolved_imports.is_empty())
return;
if (exports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto export_ = exports.get(import_);
if (export_.has_value()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, export_.value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
AK::Result<Vector<ExternValue>, LinkError> Linker::finish()
{
populate();
if (!m_unresolved_imports.is_empty()) {
if (!m_error.has_value())
m_error = LinkError {};
for (auto& entry : m_unresolved_imports)
m_error->missing_imports.append(entry.name);
return *m_error;
}
if (m_error.has_value())
return *m_error;
// Result must be in the same order as the module imports
Vector<ExternValue> exports;
exports.ensure_capacity(m_ordered_imports.size());
for (auto& import_ : m_ordered_imports)
exports.unchecked_append(*m_resolved_imports.get(import_));
return exports;
}
void Linker::populate()
{
if (!m_ordered_imports.is_empty())
return;
// There better be at most one import section!
bool already_seen_an_import_section = false;
m_module.for_each_section_of_type<ImportSection>([&](ImportSection const& section) {
if (already_seen_an_import_section) {
if (!m_error.has_value())
m_error = LinkError {};
m_error->other_errors.append(LinkError::InvalidImportedModule);
return;
}
already_seen_an_import_section = true;
for (auto& import_ : section.imports()) {
m_ordered_imports.append({ import_.module(), import_.name(), import_.description() });
m_unresolved_imports.set(m_ordered_imports.last());
}
});
}
}