ladybird/Userland/Libraries/LibGfx/ImageFormats/JPEGLoader.cpp
Lucas CHOLLET 3f9c5af553 LibGfx/JPEG: More support for scans with a single component
Introduced in 2c98eff, support for non-interleaved scans was not working
for frames with a number of MCU per line or column that is odd. Indeed,
the decoder assumed that they have scans that include a fabricated MCU
like scans with multiple components.

This patch makes the decoder handle images with a number of MCU per line
or column that is odd. To do so, as in the current decoder state we do
not know if components are interleaved at allocation time, we skip over
falsely-created macroblocks when filling them. As stated in 2c98eff,
this is probably not a good solution and a whole refactor will be
welcome.

It also comes with a test that open a square image with a side of 600px,
meaning 75 MCUs.
2023-03-25 21:31:21 +01:00

1648 lines
63 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <AK/Error.h>
#include <AK/FixedArray.h>
#include <AK/HashMap.h>
#include <AK/Math.h>
#include <AK/MemoryStream.h>
#include <AK/String.h>
#include <AK/Try.h>
#include <AK/Vector.h>
#include <LibGfx/ImageFormats/JPEGLoader.h>
#define JPEG_INVALID 0X0000
// These names are defined in B.1.1.3 - Marker assignments
#define JPEG_APPN0 0XFFE0
#define JPEG_APPN1 0XFFE1
#define JPEG_APPN2 0XFFE2
#define JPEG_APPN3 0XFFE3
#define JPEG_APPN4 0XFFE4
#define JPEG_APPN5 0XFFE5
#define JPEG_APPN6 0XFFE6
#define JPEG_APPN7 0XFFE7
#define JPEG_APPN8 0XFFE8
#define JPEG_APPN9 0XFFE9
#define JPEG_APPN10 0XFFEA
#define JPEG_APPN11 0XFFEB
#define JPEG_APPN12 0XFFEC
#define JPEG_APPN13 0XFFED
#define JPEG_APPN14 0xFFEE
#define JPEG_APPN15 0xFFEF
#define JPEG_RESERVED1 0xFFF1
#define JPEG_RESERVED2 0xFFF2
#define JPEG_RESERVED3 0xFFF3
#define JPEG_RESERVED4 0xFFF4
#define JPEG_RESERVED5 0xFFF5
#define JPEG_RESERVED6 0xFFF6
#define JPEG_RESERVED7 0xFFF7
#define JPEG_RESERVED8 0xFFF8
#define JPEG_RESERVED9 0xFFF9
#define JPEG_RESERVEDA 0xFFFA
#define JPEG_RESERVEDB 0xFFFB
#define JPEG_RESERVEDC 0xFFFC
#define JPEG_RESERVEDD 0xFFFD
#define JPEG_RST0 0xFFD0
#define JPEG_RST1 0xFFD1
#define JPEG_RST2 0xFFD2
#define JPEG_RST3 0xFFD3
#define JPEG_RST4 0xFFD4
#define JPEG_RST5 0xFFD5
#define JPEG_RST6 0xFFD6
#define JPEG_RST7 0xFFD7
#define JPEG_ZRL 0xF0
#define JPEG_DHP 0xFFDE
#define JPEG_EXP 0xFFDF
#define JPEG_DAC 0XFFCC
#define JPEG_DHT 0XFFC4
#define JPEG_DQT 0XFFDB
#define JPEG_EOI 0xFFD9
#define JPEG_DRI 0XFFDD
#define JPEG_SOF0 0XFFC0
#define JPEG_SOF2 0xFFC2
#define JPEG_SOF15 0xFFCF
#define JPEG_SOI 0XFFD8
#define JPEG_SOS 0XFFDA
#define JPEG_COM 0xFFFE
namespace Gfx {
constexpr static u8 zigzag_map[64] {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
using Marker = u16;
/**
* MCU means group of data units that are coded together. A data unit is an 8x8
* block of component data. In interleaved scans, number of non-interleaved data
* units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
* vertical subsampling factors of the component, respectively. A MacroBlock is
* an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
* we're done decoding the huffman stream.
*/
struct Macroblock {
union {
i32 y[64] = { 0 };
i32 r[64];
};
union {
i32 cb[64] = { 0 };
i32 g[64];
};
union {
i32 cr[64] = { 0 };
i32 b[64];
};
};
struct MacroblockMeta {
u32 total { 0 };
u32 padded_total { 0 };
u32 hcount { 0 };
u32 vcount { 0 };
u32 hpadded_count { 0 };
u32 vpadded_count { 0 };
};
// In the JPEG format, components are defined first at the frame level, then
// referenced in each scan and aggregated with scan-specific information. The
// two following structs mimic this hierarchy.
struct Component {
// B.2.2 - Frame header syntax
u8 id { 0 }; // Ci, Component identifier
u8 hsample_factor { 1 }; // Hi, Horizontal sampling factor
u8 vsample_factor { 1 }; // Vi, Vertical sampling factor
u8 qtable_id { 0 }; // Tqi, Quantization table destination selector
// The JPEG specification does not specify which component corresponds to
// Y, Cb or Cr. This field (actually the index in the parent Vector) will
// act as an authority to determine the *real* component.
// Please note that this is implementation specific.
u8 index { 0 };
};
struct ScanComponent {
// B.2.3 - Scan header syntax
Component& component;
u8 dc_destination_id { 0 }; // Tdj, DC entropy coding table destination selector
u8 ac_destination_id { 0 }; // Taj, AC entropy coding table destination selector
};
struct StartOfFrame {
// Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
enum class FrameType {
Baseline_DCT = 0,
Extended_Sequential_DCT = 1,
Progressive_DCT = 2,
Sequential_Lossless = 3,
Differential_Sequential_DCT = 5,
Differential_Progressive_DCT = 6,
Differential_Sequential_Lossless = 7,
Extended_Sequential_DCT_Arithmetic = 9,
Progressive_DCT_Arithmetic = 10,
Sequential_Lossless_Arithmetic = 11,
Differential_Sequential_DCT_Arithmetic = 13,
Differential_Progressive_DCT_Arithmetic = 14,
Differential_Sequential_Lossless_Arithmetic = 15,
};
FrameType type { FrameType::Baseline_DCT };
u8 precision { 0 };
u16 height { 0 };
u16 width { 0 };
};
struct HuffmanTableSpec {
u8 type { 0 };
u8 destination_id { 0 };
u8 code_counts[16] = { 0 };
Vector<u8> symbols;
Vector<u16> codes;
};
struct HuffmanStreamState {
Vector<u8> stream;
u8 bit_offset { 0 };
size_t byte_offset { 0 };
};
struct ICCMultiChunkState {
u8 seen_number_of_icc_chunks { 0 };
FixedArray<ByteBuffer> chunks;
};
struct Scan {
// B.2.3 - Scan header syntax
Vector<ScanComponent, 3> components;
u8 spectral_selection_start {};
u8 spectral_selection_end {};
u8 successive_approximation {};
HuffmanStreamState huffman_stream;
u64 end_of_bands_run_count { 0 };
// See the note on Figure B.4 - Scan header syntax
bool are_components_interleaved() const
{
return components.size() != 1;
}
};
enum class ColorTransform {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
CmykOrRgb = 0,
YCbCr = 1,
YCCK = 2,
};
struct JPEGLoadingContext {
enum State {
NotDecoded = 0,
Error,
FrameDecoded,
HeaderDecoded,
BitmapDecoded
};
State state { State::NotDecoded };
u32 luma_table[64] = { 0 };
u32 chroma_table[64] = { 0 };
StartOfFrame frame;
u8 hsample_factor { 0 };
u8 vsample_factor { 0 };
Scan current_scan;
Vector<Component, 3> components;
RefPtr<Gfx::Bitmap> bitmap;
u16 dc_restart_interval { 0 };
HashMap<u8, HuffmanTableSpec> dc_tables;
HashMap<u8, HuffmanTableSpec> ac_tables;
i32 previous_dc_values[3] = { 0 };
MacroblockMeta mblock_meta;
OwnPtr<FixedMemoryStream> stream;
Optional<ColorTransform> color_transform {};
Optional<ICCMultiChunkState> icc_multi_chunk_state;
Optional<ByteBuffer> icc_data;
};
static void generate_huffman_codes(HuffmanTableSpec& table)
{
unsigned code = 0;
for (auto number_of_codes : table.code_counts) {
for (int i = 0; i < number_of_codes; i++)
table.codes.append(code++);
code <<= 1;
}
}
static ErrorOr<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
{
if (count > (8 * sizeof(size_t))) {
dbgln_if(JPEG_DEBUG, "Can't read {} bits at once!", count);
return Error::from_string_literal("Reading too much huffman bits at once");
}
size_t value = 0;
while (count--) {
if (hstream.byte_offset >= hstream.stream.size()) {
dbgln_if(JPEG_DEBUG, "Huffman stream exhausted. This could be an error!");
return Error::from_string_literal("Huffman stream exhausted.");
}
u8 current_byte = hstream.stream[hstream.byte_offset];
u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
hstream.bit_offset++;
value = (value << 1) | (size_t)current_bit;
if (hstream.bit_offset == 8) {
hstream.byte_offset++;
hstream.bit_offset = 0;
}
}
return value;
}
static ErrorOr<u8> get_next_symbol(HuffmanStreamState& hstream, HuffmanTableSpec const& table)
{
unsigned code = 0;
size_t code_cursor = 0;
for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
auto result = TRY(read_huffman_bits(hstream));
code = (code << 1) | (i32)result;
for (int j = 0; j < table.code_counts[i]; j++) {
if (code == table.codes[code_cursor])
return table.symbols[code_cursor];
code_cursor++;
}
}
dbgln_if(JPEG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
return Error::from_string_literal("This kind of JPEG is not yet supported by the decoder");
}
static inline i32* get_component(Macroblock& block, unsigned component)
{
switch (component) {
case 0:
return block.y;
case 1:
return block.cb;
default:
return block.cr;
}
}
static ErrorOr<void> add_dc(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.dc_tables.get(scan_component.dc_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a DC table with id: {}", scan_component.dc_destination_id);
return Error::from_string_literal("Unable to find corresponding DC table");
}
auto& dc_table = maybe_table.value();
auto& scan = context.current_scan;
// For DC coefficients, symbol encodes the length of the coefficient.
auto dc_length = TRY(get_next_symbol(scan.huffman_stream, dc_table));
if (dc_length > 11) {
dbgln_if(JPEG_DEBUG, "DC coefficient too long: {}!", dc_length);
return Error::from_string_literal("DC coefficient too long");
}
// DC coefficients are encoded as the difference between previous and current DC values.
i32 dc_diff = TRY(read_huffman_bits(scan.huffman_stream, dc_length));
// If MSB in diff is 0, the difference is -ve. Otherwise +ve.
if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
dc_diff -= (1 << dc_length) - 1;
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& previous_dc = context.previous_dc_values[scan_component.component.index];
select_component[0] = previous_dc += dc_diff;
return {};
}
static ErrorOr<bool> read_eob(Scan& scan, u32 symbol)
{
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
// Note: We also use it for non-progressive encoding as it supports both EOB and ZRL
if (auto const eob = symbol & 0x0F; eob == 0 && symbol != JPEG_ZRL) {
// We encountered an EOB marker
auto const eob_base = symbol >> 4;
auto const additional_value = TRY(read_huffman_bits(scan.huffman_stream, eob_base));
scan.end_of_bands_run_count = additional_value + (1 << eob_base) - 1;
return true;
}
return false;
}
static ErrorOr<void> add_ac(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.ac_tables.get(scan_component.ac_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a AC table with id: {}", scan_component.ac_destination_id);
return Error::from_string_literal("Unable to find corresponding AC table");
}
auto& ac_table = maybe_table.value();
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& scan = context.current_scan;
// Compute the AC coefficients.
// 0th coefficient is the dc, which is already handled
auto first_coefficient = max(1, scan.spectral_selection_start);
for (int j = first_coefficient; j <= scan.spectral_selection_end;) {
// AC symbols encode 2 pieces of information, the high 4 bits represent
// number of zeroes to be stuffed before reading the coefficient. Low 4
// bits represent the magnitude of the coefficient.
auto ac_symbol = TRY(get_next_symbol(scan.huffman_stream, ac_table));
if (TRY(read_eob(scan, ac_symbol)))
break;
// ac_symbol = JPEG_ZRL means we need to skip 16 zeroes.
u8 run_length = ac_symbol == JPEG_ZRL ? 16 : ac_symbol >> 4;
j += run_length;
if (j > scan.spectral_selection_end) {
dbgln_if(JPEG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length);
return Error::from_string_literal("Run-length exceeded boundaries");
}
u8 coeff_length = ac_symbol & 0x0F;
if (coeff_length > 10) {
dbgln_if(JPEG_DEBUG, "AC coefficient too long: {}!", coeff_length);
return Error::from_string_literal("AC coefficient too long");
}
if (coeff_length != 0) {
i32 ac_coefficient = TRY(read_huffman_bits(scan.huffman_stream, coeff_length));
if (ac_coefficient < (1 << (coeff_length - 1)))
ac_coefficient -= (1 << coeff_length) - 1;
select_component[zigzag_map[j++]] = ac_coefficient;
}
}
return {};
}
/**
* Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
* Depending on the sampling factors, we may not see triples of y, cb, cr in that
* order. If sample factors differ from one, we'll read more than one block of y-
* coefficients before we get to read a cb-cr block.
* In the function below, `hcursor` and `vcursor` denote the location of the block
* we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
* that iterate over the vertical and horizontal subsampling factors, respectively.
* When we finish one iteration of the innermost loop, we'll have the coefficients
* of one of the components of block at position `macroblock_index`. When the outermost
* loop finishes first iteration, we'll have all the luminance coefficients for all the
* macroblocks that share the chrominance data. Next two iterations (assuming that
* we are dealing with three components) will fill up the blocks with chroma data.
*/
static ErrorOr<void> build_macroblocks(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
{
for (auto const& scan_component : context.current_scan.components) {
for (u8 vfactor_i = 0; vfactor_i < scan_component.component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < scan_component.component.hsample_factor; hfactor_i++) {
// A.2.3 - Interleaved order
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
if (!context.current_scan.are_components_interleaved()) {
macroblock_index = vcursor * context.mblock_meta.hpadded_count + (hfactor_i + (hcursor * scan_component.component.vsample_factor) + (vfactor_i * scan_component.component.hsample_factor));
// A.2.4 Completion of partial MCU
// If the component is [and only if!] to be interleaved, the encoding process
// shall also extend the number of samples by one or more additional blocks.
// Horizontally
if (macroblock_index >= context.mblock_meta.hcount && macroblock_index % context.mblock_meta.hpadded_count >= context.mblock_meta.hcount)
continue;
// Vertically
if (macroblock_index >= context.mblock_meta.hpadded_count * context.mblock_meta.vcount)
continue;
}
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
if (context.current_scan.end_of_bands_run_count > 0) {
--context.current_scan.end_of_bands_run_count;
continue;
}
Macroblock& block = macroblocks[macroblock_index];
if (context.current_scan.spectral_selection_start == 0)
TRY(add_dc(context, block, scan_component));
if (context.current_scan.spectral_selection_end != 0)
TRY(add_ac(context, block, scan_component));
}
}
}
return {};
}
static bool is_dct_based(StartOfFrame::FrameType frame_type)
{
return frame_type == StartOfFrame::FrameType::Baseline_DCT
|| frame_type == StartOfFrame::FrameType::Extended_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic;
}
static void reset_decoder(JPEGLoadingContext& context)
{
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
context.current_scan.end_of_bands_run_count = 0;
// E.2.4 Control procedure for decoding a restart interval
if (is_dct_based(context.frame.type)) {
context.previous_dc_values[0] = 0;
context.previous_dc_values[1] = 0;
context.previous_dc_values[2] = 0;
return;
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_huffman_stream(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
// Compute huffman codes for DC and AC tables.
for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
generate_huffman_codes(it->value);
for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
generate_huffman_codes(it->value);
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
auto& huffman_stream = context.current_scan.huffman_stream;
if (context.dc_restart_interval > 0) {
if (i != 0 && i % (context.dc_restart_interval * context.vsample_factor * context.hsample_factor) == 0) {
reset_decoder(context);
// Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
// the 0th bit of the next byte.
if (huffman_stream.byte_offset < huffman_stream.stream.size()) {
if (huffman_stream.bit_offset > 0) {
huffman_stream.bit_offset = 0;
huffman_stream.byte_offset++;
}
// Skip the restart marker (RSTn).
huffman_stream.byte_offset++;
}
}
}
if (auto result = build_macroblocks(context, macroblocks, hcursor, vcursor); result.is_error()) {
if constexpr (JPEG_DEBUG) {
dbgln("Failed to build Macroblock {}: {}", i, result.error());
dbgln("Huffman stream byte offset {}", huffman_stream.byte_offset);
dbgln("Huffman stream bit offset {}", huffman_stream.bit_offset);
}
return result.release_error();
}
}
}
return {};
}
static inline ErrorOr<void> ensure_bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
{
if (Checked<size_t>::addition_would_overflow(delta, cursor))
return Error::from_string_literal("Bounds are not ok: addition would overflow");
if (delta + cursor >= bound)
return Error::from_string_literal("Bounds are not ok");
return {};
}
static bool is_frame_marker(Marker const marker)
{
// B.1.1.3 - Marker assignments
bool const is_sof_marker = marker >= JPEG_SOF0 && marker <= JPEG_SOF15;
// Start of frame markers are valid for JPEG_SOF0 to JPEG_SOF15 except number 4, 8 (reserved) and 12.
bool const is_defined_marker = marker != JPEG_DHT && marker != 0xFFC8 && marker != JPEG_DAC;
return is_sof_marker && is_defined_marker;
}
static inline bool is_supported_marker(Marker const marker)
{
if (marker >= JPEG_APPN0 && marker <= JPEG_APPN15) {
if (marker != JPEG_APPN0 && marker != JPEG_APPN14)
dbgln_if(JPEG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
return true;
}
if (marker >= JPEG_RESERVED1 && marker <= JPEG_RESERVEDD)
return true;
if (marker >= JPEG_RST0 && marker <= JPEG_RST7)
return true;
switch (marker) {
case JPEG_COM:
case JPEG_DHP:
case JPEG_EXP:
case JPEG_DHT:
case JPEG_DQT:
case JPEG_DRI:
case JPEG_EOI:
case JPEG_SOF0:
case JPEG_SOF2:
case JPEG_SOI:
case JPEG_SOS:
return true;
}
if (is_frame_marker(marker))
dbgln_if(JPEG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
return false;
}
static inline ErrorOr<Marker> read_marker_at_cursor(Stream& stream)
{
u16 marker = TRY(stream.read_value<BigEndian<u16>>());
if (is_supported_marker(marker))
return marker;
if (marker != 0xFFFF)
return JPEG_INVALID;
u8 next;
do {
next = TRY(stream.read_value<u8>());
if (next == 0x00)
return JPEG_INVALID;
} while (next == 0xFF);
marker = 0xFF00 | (u16)next;
return is_supported_marker(marker) ? marker : JPEG_INVALID;
}
static ErrorOr<void> read_start_of_scan(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
// B.2.3 - Scan header syntax
if (context.state < JPEGLoadingContext::State::FrameDecoded) {
dbgln_if(JPEG_DEBUG, "{}: SOS found before reading a SOF!", TRY(stream.tell()));
return Error::from_string_literal("SOS found before reading a SOF");
}
u16 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>()) - 2;
TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size())));
u8 const component_count = TRY(stream.read_value<u8>());
Scan current_scan;
current_scan.huffman_stream.stream.ensure_capacity(50 * KiB);
Optional<u8> last_read;
u8 component_read = 0;
for (auto& component : context.components) {
// See the Csj paragraph:
// [...] the ordering in the scan header shall follow the ordering in the frame header.
if (component_read == component_count)
break;
if (!last_read.has_value())
last_read = TRY(stream.read_value<u8>());
if (component.id != *last_read)
continue;
u8 table_ids = TRY(stream.read_value<u8>());
current_scan.components.empend(component, static_cast<u8>(table_ids >> 4), static_cast<u8>(table_ids & 0x0F));
component_read++;
last_read.clear();
}
if constexpr (JPEG_DEBUG) {
StringBuilder builder;
TRY(builder.try_append("Components in scan: "sv));
for (auto const& scan_component : current_scan.components) {
TRY(builder.try_append(TRY(String::number(scan_component.component.id))));
TRY(builder.try_append(' '));
}
dbgln(builder.string_view());
}
current_scan.spectral_selection_start = TRY(stream.read_value<u8>());
current_scan.spectral_selection_end = TRY(stream.read_value<u8>());
current_scan.successive_approximation = TRY(stream.read_value<u8>());
dbgln_if(JPEG_DEBUG, "Start of Selection: {}, End of Selection: {}, Successive Approximation: {}",
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation);
// FIXME: Support SOF2 jpegs with current_scan.successive_approximation != 0
if (current_scan.spectral_selection_start > 63 || current_scan.spectral_selection_end > 63 || current_scan.successive_approximation != 0) {
dbgln_if(JPEG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!",
TRY(stream.tell()),
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation);
return Error::from_string_literal("Spectral selection is not [0,63] or successive approximation is not null");
}
context.current_scan = move(current_scan);
return {};
}
static ErrorOr<void> read_restart_interval(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
// B.2.4.4 - Restart interval definition syntax
u16 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>()) - 2;
if (bytes_to_read != 2) {
dbgln_if(JPEG_DEBUG, "{}: Malformed DRI marker found!", TRY(stream.tell()));
return Error::from_string_literal("Malformed DRI marker found");
}
context.dc_restart_interval = TRY(stream.read_value<BigEndian<u16>>());
return {};
}
static ErrorOr<void> read_huffman_table(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
i32 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>());
TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size())));
bytes_to_read -= 2;
while (bytes_to_read > 0) {
HuffmanTableSpec table;
u8 table_info = TRY(stream.read_value<u8>());
u8 table_type = table_info >> 4;
u8 table_destination_id = table_info & 0x0F;
if (table_type > 1) {
dbgln_if(JPEG_DEBUG, "{}: Unrecognized huffman table: {}!", TRY(stream.tell()), table_type);
return Error::from_string_literal("Unrecognized huffman table");
}
if (table_destination_id > 1) {
dbgln_if(JPEG_DEBUG, "{}: Invalid huffman table destination id: {}!", TRY(stream.tell()), table_destination_id);
return Error::from_string_literal("Invalid huffman table destination id");
}
table.type = table_type;
table.destination_id = table_destination_id;
u32 total_codes = 0;
// Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
for (int i = 0; i < 16; i++) {
u8 count = TRY(stream.read_value<u8>());
total_codes += count;
table.code_counts[i] = count;
}
table.codes.ensure_capacity(total_codes);
// Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
for (u32 i = 0; i < total_codes; i++) {
u8 symbol = TRY(stream.read_value<u8>());
table.symbols.append(symbol);
}
auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
huffman_table.set(table.destination_id, table);
VERIFY(huffman_table.size() <= 2);
bytes_to_read -= 1 + 16 + total_codes;
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "{}: Extra bytes detected in huffman header!", TRY(stream.tell()));
return Error::from_string_literal("Extra bytes detected in huffman header");
}
return {};
}
static ErrorOr<void> read_icc_profile(SeekableStream& stream, JPEGLoadingContext& context, int bytes_to_read)
{
if (bytes_to_read <= 2)
return Error::from_string_literal("icc marker too small");
auto chunk_sequence_number = TRY(stream.read_value<u8>()); // 1-based
auto number_of_chunks = TRY(stream.read_value<u8>());
bytes_to_read -= 2;
if (!context.icc_multi_chunk_state.has_value())
context.icc_multi_chunk_state.emplace(ICCMultiChunkState { 0, TRY(FixedArray<ByteBuffer>::create(number_of_chunks)) });
auto& chunk_state = context.icc_multi_chunk_state;
if (chunk_state->seen_number_of_icc_chunks >= number_of_chunks)
return Error::from_string_literal("Too many ICC chunks");
if (chunk_state->chunks.size() != number_of_chunks)
return Error::from_string_literal("Inconsistent number of total ICC chunks");
if (chunk_sequence_number == 0)
return Error::from_string_literal("ICC chunk sequence number not 1 based");
u8 index = chunk_sequence_number - 1;
if (index >= chunk_state->chunks.size())
return Error::from_string_literal("ICC chunk sequence number larger than number of chunks");
if (!chunk_state->chunks[index].is_empty())
return Error::from_string_literal("Duplicate ICC chunk at sequence number");
chunk_state->chunks[index] = TRY(ByteBuffer::create_zeroed(bytes_to_read));
TRY(stream.read_until_filled(chunk_state->chunks[index]));
chunk_state->seen_number_of_icc_chunks++;
if (chunk_state->seen_number_of_icc_chunks != chunk_state->chunks.size())
return {};
if (number_of_chunks == 1) {
context.icc_data = move(chunk_state->chunks[0]);
return {};
}
size_t total_size = 0;
for (auto const& chunk : chunk_state->chunks)
total_size += chunk.size();
auto icc_bytes = TRY(ByteBuffer::create_zeroed(total_size));
size_t start = 0;
for (auto const& chunk : chunk_state->chunks) {
memcpy(icc_bytes.data() + start, chunk.data(), chunk.size());
start += chunk.size();
}
context.icc_data = move(icc_bytes);
return {};
}
static ErrorOr<void> read_colour_encoding(SeekableStream& stream, [[maybe_unused]] JPEGLoadingContext& context, int bytes_to_read)
{
// The App 14 segment is application specific in the first JPEG standard.
// However, the Adobe implementation is globally accepted and the value of the color transform
// was latter standardized as a JPEG-1 extension.
// For the structure of the App 14 segment, see:
// https://www.pdfa.org/norm-refs/5116.DCT_Filter.pdf
// 18 Adobe Application-Specific JPEG Marker
// For the value of color_transform, see:
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
if (bytes_to_read < 6)
return Error::from_string_literal("App14 segment too small");
[[maybe_unused]] auto const version = TRY(stream.read_value<u8>());
[[maybe_unused]] u16 const flag0 = TRY(stream.read_value<BigEndian<u16>>());
[[maybe_unused]] u16 const flag1 = TRY(stream.read_value<BigEndian<u16>>());
auto const color_transform = TRY(stream.read_value<u8>());
if (bytes_to_read > 6) {
dbgln_if(JPEG_DEBUG, "Unread bytes in App14 segment: {}", bytes_to_read - 1);
TRY(stream.discard(bytes_to_read - 1));
}
switch (color_transform) {
case 0:
context.color_transform = ColorTransform::CmykOrRgb;
break;
case 1:
context.color_transform = ColorTransform::YCbCr;
break;
case 2:
context.color_transform = ColorTransform::YCCK;
break;
default:
dbgln("0x{:x} is not a specified transform flag value, ignoring", color_transform);
}
return {};
}
static ErrorOr<void> read_app_marker(SeekableStream& stream, JPEGLoadingContext& context, int app_marker_number)
{
i32 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>());
TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size())));
if (bytes_to_read <= 2)
return Error::from_string_literal("app marker size too small");
bytes_to_read -= 2;
StringBuilder builder;
for (;;) {
if (bytes_to_read == 0)
return Error::from_string_literal("app marker size too small for identifier");
auto c = TRY(stream.read_value<char>());
bytes_to_read--;
if (c == '\0')
break;
TRY(builder.try_append(c));
}
auto app_id = TRY(builder.to_string());
if (app_marker_number == 2 && app_id == "ICC_PROFILE"sv)
return read_icc_profile(stream, context, bytes_to_read);
if (app_marker_number == 14 && app_id == "Adobe"sv)
return read_colour_encoding(stream, context, bytes_to_read);
return stream.discard(bytes_to_read);
}
static inline bool validate_luma_and_modify_context(Component const& luma, JPEGLoadingContext& context)
{
if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
// For easy reference to relevant sample factors.
context.hsample_factor = luma.hsample_factor;
context.vsample_factor = luma.vsample_factor;
if constexpr (JPEG_DEBUG) {
dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
}
return true;
}
return false;
}
static inline void set_macroblock_metadata(JPEGLoadingContext& context)
{
context.mblock_meta.hcount = (context.frame.width + 7) / 8;
context.mblock_meta.vcount = (context.frame.height + 7) / 8;
context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}
static ErrorOr<void> read_start_of_frame(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
if (context.state == JPEGLoadingContext::FrameDecoded) {
dbgln_if(JPEG_DEBUG, "{}: SOF repeated!", TRY(stream.tell()));
return Error::from_string_literal("SOF repeated");
}
i32 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>());
bytes_to_read -= 2;
TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size())));
context.frame.precision = TRY(stream.read_value<u8>());
if (context.frame.precision != 8) {
dbgln_if(JPEG_DEBUG, "{}: SOF precision != 8!", TRY(stream.tell()));
return Error::from_string_literal("SOF precision != 8");
}
context.frame.height = TRY(stream.read_value<BigEndian<u16>>());
context.frame.width = TRY(stream.read_value<BigEndian<u16>>());
if (!context.frame.width || !context.frame.height) {
dbgln_if(JPEG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", TRY(stream.tell()), context.frame.height, context.frame.width);
return Error::from_string_literal("Image frame height of width null");
}
if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
return Error::from_string_literal("JPEG too large for comfort");
}
set_macroblock_metadata(context);
auto component_count = TRY(stream.read_value<u8>());
if (component_count != 1 && component_count != 3) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported number of components in SOF: {}!", TRY(stream.tell()), component_count);
return Error::from_string_literal("Unsupported number of components in SOF");
}
for (u8 i = 0; i < component_count; i++) {
Component component;
component.id = TRY(stream.read_value<u8>());
component.index = i;
u8 subsample_factors = TRY(stream.read_value<u8>());
component.hsample_factor = subsample_factors >> 4;
component.vsample_factor = subsample_factors & 0x0F;
if (i == 0) {
// By convention, downsampling is applied only on chroma components. So we should
// hope to see the maximum sampling factor in the luma component.
if (!validate_luma_and_modify_context(component, context)) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
TRY(stream.tell()),
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported luma subsampling factors");
}
} else {
if (component.hsample_factor != 1 || component.vsample_factor != 1) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
TRY(stream.tell()),
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported chroma subsampling factors");
}
}
component.qtable_id = TRY(stream.read_value<u8>());
if (component.qtable_id > 1) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported quantization table id: {}!", TRY(stream.tell()), component.qtable_id);
return Error::from_string_literal("Unsupported quantization table id");
}
context.components.append(move(component));
}
return {};
}
static ErrorOr<void> read_quantization_table(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
i32 bytes_to_read = TRY(stream.read_value<BigEndian<u16>>()) - 2;
TRY(ensure_bounds_okay(TRY(stream.tell()), bytes_to_read, TRY(stream.size())));
while (bytes_to_read > 0) {
u8 info_byte = TRY(stream.read_value<u8>());
u8 element_unit_hint = info_byte >> 4;
if (element_unit_hint > 1) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", TRY(stream.tell()), element_unit_hint);
return Error::from_string_literal("Unsupported unit hint in quantization table");
}
u8 table_id = info_byte & 0x0F;
if (table_id > 1) {
dbgln_if(JPEG_DEBUG, "{}: Unsupported quantization table id: {}!", TRY(stream.tell()), table_id);
return Error::from_string_literal("Unsupported quantization table id");
}
u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
for (int i = 0; i < 64; i++) {
if (element_unit_hint == 0) {
u8 tmp = TRY(stream.read_value<u8>());
table[zigzag_map[i]] = tmp;
} else {
table[zigzag_map[i]] = TRY(stream.read_value<BigEndian<u16>>());
}
}
bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "{}: Invalid length for one or more quantization tables!", TRY(stream.tell()));
return Error::from_string_literal("Invalid length for one or more quantization tables");
}
return {};
}
static ErrorOr<void> skip_segment(Stream& stream)
{
u16 bytes_to_skip = TRY(stream.read_value<BigEndian<u16>>()) - 2;
TRY(stream.discard(bytes_to_skip));
return {};
}
static void dequantize(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 i = 0; i < context.components.size(); i++) {
auto& component = context.components[i];
u32 const* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
int* block_component = get_component(block, i);
for (u32 k = 0; k < 64; k++)
block_component[k] *= table[k];
}
}
}
}
}
}
static void inverse_dct(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
static float const m0 = 2.0f * AK::cos(1.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m1 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m3 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m5 = 2.0f * AK::cos(3.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m2 = m0 - m5;
static float const m4 = m0 + m5;
static float const s0 = AK::cos(0.0f / 16.0f * AK::Pi<float>) * AK::rsqrt(8.0f);
static float const s1 = AK::cos(1.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s2 = AK::cos(2.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s3 = AK::cos(3.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s4 = AK::cos(4.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s5 = AK::cos(5.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s6 = AK::cos(6.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s7 = AK::cos(7.0f / 16.0f * AK::Pi<float>) / 2.0f;
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 component_i = 0; component_i < context.components.size(); component_i++) {
auto& component = context.components[component_i];
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
i32* block_component = get_component(block, component_i);
for (u32 k = 0; k < 8; ++k) {
float const g0 = block_component[0 * 8 + k] * s0;
float const g1 = block_component[4 * 8 + k] * s4;
float const g2 = block_component[2 * 8 + k] * s2;
float const g3 = block_component[6 * 8 + k] * s6;
float const g4 = block_component[5 * 8 + k] * s5;
float const g5 = block_component[1 * 8 + k] * s1;
float const g6 = block_component[7 * 8 + k] * s7;
float const g7 = block_component[3 * 8 + k] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[0 * 8 + k] = b0 + b7;
block_component[1 * 8 + k] = b1 + b6;
block_component[2 * 8 + k] = b2 + b5;
block_component[3 * 8 + k] = b3 + b4;
block_component[4 * 8 + k] = b3 - b4;
block_component[5 * 8 + k] = b2 - b5;
block_component[6 * 8 + k] = b1 - b6;
block_component[7 * 8 + k] = b0 - b7;
}
for (u32 l = 0; l < 8; ++l) {
float const g0 = block_component[l * 8 + 0] * s0;
float const g1 = block_component[l * 8 + 4] * s4;
float const g2 = block_component[l * 8 + 2] * s2;
float const g3 = block_component[l * 8 + 6] * s6;
float const g4 = block_component[l * 8 + 5] * s5;
float const g5 = block_component[l * 8 + 1] * s1;
float const g6 = block_component[l * 8 + 7] * s7;
float const g7 = block_component[l * 8 + 3] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[l * 8 + 0] = b0 + b7;
block_component[l * 8 + 1] = b1 + b6;
block_component[l * 8 + 2] = b2 + b5;
block_component[l * 8 + 3] = b3 + b4;
block_component[l * 8 + 4] = b3 - b4;
block_component[l * 8 + 5] = b2 - b5;
block_component[l * 8 + 6] = b1 - b6;
block_component[l * 8 + 7] = b0 - b7;
}
}
}
}
}
}
}
static void ycbcr_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
Macroblock const& chroma = macroblocks[chroma_block_index];
// Overflows are intentional.
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
i32* y = macroblocks[macroblock_index].y;
i32* cb = macroblocks[macroblock_index].cb;
i32* cr = macroblocks[macroblock_index].cr;
for (u8 i = 7; i < 8; --i) {
for (u8 j = 7; j < 8; --j) {
const u8 pixel = i * 8 + j;
const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
}
}
}
}
}
}
}
static void signed_rgb_to_unsigned(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = clamp(macroblocks[mb_index].r[i * 8 + j] + 128, 0, 255);
macroblocks[mb_index].g[i * 8 + j] = clamp(macroblocks[mb_index].g[i * 8 + j] + 128, 0, 255);
macroblocks[mb_index].b[i * 8 + j] = clamp(macroblocks[mb_index].b[i * 8 + j] + 128, 0, 255);
}
}
}
}
}
}
}
static ErrorOr<void> handle_color_transform(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
if (context.color_transform.has_value()) {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
switch (*context.color_transform) {
case ColorTransform::CmykOrRgb:
if (context.components.size() == 4) {
// FIXME: implement CMYK
dbgln("CMYK isn't supported yet");
} else if (context.components.size() == 3) {
signed_rgb_to_unsigned(context, macroblocks);
} else {
return Error::from_string_literal("Wrong number of components for CMYK or RGB, aborting.");
}
break;
case ColorTransform::YCbCr:
ycbcr_to_rgb(context, macroblocks);
break;
case ColorTransform::YCCK:
// FIXME: implement YCCK
dbgln("YCCK isn't supported yet");
break;
}
return {};
}
// No App14 segment is present, assuming :
// - 1 components means grayscale
// - 3 components means YCbCr
// - 4 components means CMYK
if (context.components.size() == 4) {
// FIXME: implement CMYK
dbgln("CMYK isn't supported yet");
}
if (context.components.size() == 3)
ycbcr_to_rgb(context, macroblocks);
if (context.components.size() == 1) {
// With Cb and Cr being equal to zero, this function assign the Y
// value (luminosity) to R, G and B. Providing a proper conversion
// from grayscale to RGB.
ycbcr_to_rgb(context, macroblocks);
}
return {};
}
static ErrorOr<void> compose_bitmap(JPEGLoadingContext& context, Vector<Macroblock> const& macroblocks)
{
context.bitmap = TRY(Bitmap::create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height }));
for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
const u32 block_row = y / 8;
const u32 pixel_row = y % 8;
for (u32 x = 0; x < context.frame.width; x++) {
const u32 block_column = x / 8;
auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
const u32 pixel_column = x % 8;
const u32 pixel_index = pixel_row * 8 + pixel_column;
const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
context.bitmap->set_pixel(x, y, color);
}
}
return {};
}
static bool is_app_marker(Marker const marker)
{
return marker >= JPEG_APPN0 && marker <= JPEG_APPN15;
}
static bool is_miscellaneous_or_table_marker(Marker const marker)
{
// B.2.4 - Table-specification and miscellaneous marker segment syntax
// See also B.6 - Summary: Figure B.17 Flow of marker segment
bool const is_misc = marker == JPEG_COM || marker == JPEG_DRI || is_app_marker(marker);
bool const is_table = marker == JPEG_DQT || marker == JPEG_DAC || marker == JPEG_DHT;
return is_misc || is_table;
}
static ErrorOr<void> handle_miscellaneous_or_table(AK::SeekableStream& stream, JPEGLoadingContext& context, Marker const marker)
{
if (is_app_marker(marker)) {
TRY(read_app_marker(stream, context, marker - JPEG_APPN0));
return {};
}
switch (marker) {
case JPEG_COM:
case JPEG_DAC:
dbgln_if(JPEG_DEBUG, "TODO: implement marker \"{:x}\"", marker);
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "{}: Error skipping marker: {:x}!", TRY(stream.tell()), marker);
return result.release_error();
}
break;
case JPEG_DHT:
TRY(read_huffman_table(stream, context));
break;
case JPEG_DQT:
TRY(read_quantization_table(stream, context));
break;
case JPEG_DRI:
TRY(read_restart_interval(stream, context));
break;
default:
dbgln("Unexpected marker: {:x}", marker);
VERIFY_NOT_REACHED();
}
return {};
}
static ErrorOr<void> parse_header(AK::SeekableStream& stream, JPEGLoadingContext& context)
{
auto marker = TRY(read_marker_at_cursor(stream));
if (marker != JPEG_SOI) {
dbgln_if(JPEG_DEBUG, "{}: SOI not found: {:x}!", TRY(stream.tell()), marker);
return Error::from_string_literal("SOI not found");
}
for (;;) {
marker = TRY(read_marker_at_cursor(stream));
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(stream, context, marker));
continue;
}
// Set frame type if the marker marks a new frame.
if (is_frame_marker(marker))
context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
switch (marker) {
case JPEG_INVALID:
case JPEG_RST0:
case JPEG_RST1:
case JPEG_RST2:
case JPEG_RST3:
case JPEG_RST4:
case JPEG_RST5:
case JPEG_RST6:
case JPEG_RST7:
case JPEG_SOI:
case JPEG_EOI:
dbgln_if(JPEG_DEBUG, "{}: Unexpected marker {:x}!", TRY(stream.tell()), marker);
return Error::from_string_literal("Unexpected marker");
case JPEG_SOF0:
case JPEG_SOF2:
TRY(read_start_of_frame(stream, context));
context.state = JPEGLoadingContext::FrameDecoded;
return {};
default:
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "{}: Error skipping marker: {:x}!", TRY(stream.tell()), marker);
return result.release_error();
}
break;
}
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> scan_huffman_stream(AK::SeekableStream& stream, HuffmanStreamState& huffman_stream)
{
u8 last_byte;
u8 current_byte = TRY(stream.read_value<u8>());
for (;;) {
last_byte = current_byte;
current_byte = TRY(stream.read_value<u8>());
if (last_byte == 0xFF) {
if (current_byte == 0xFF)
continue;
if (current_byte == 0x00) {
current_byte = TRY(stream.read_value<u8>());
huffman_stream.stream.append(last_byte);
continue;
}
Marker marker = 0xFF00 | current_byte;
if (marker >= JPEG_RST0 && marker <= JPEG_RST7) {
huffman_stream.stream.append(marker);
current_byte = TRY(stream.read_value<u8>());
continue;
}
// Rollback the marker we just read
TRY(stream.seek(-2, AK::SeekMode::FromCurrentPosition));
return {};
} else {
huffman_stream.stream.append(last_byte);
}
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_header(JPEGLoadingContext& context)
{
if (context.state < JPEGLoadingContext::State::HeaderDecoded) {
if (auto result = parse_header(*context.stream, context); result.is_error()) {
context.state = JPEGLoadingContext::State::Error;
return result.release_error();
}
if constexpr (JPEG_DEBUG) {
dbgln("Image width: {}", context.frame.width);
dbgln("Image height: {}", context.frame.height);
dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
}
context.state = JPEGLoadingContext::State::HeaderDecoded;
}
return {};
}
static ErrorOr<Vector<Macroblock>> construct_macroblocks(JPEGLoadingContext& context)
{
// B.6 - Summary
// See: Figure B.16 Flow of compressed data syntax
// This function handles the "Multi-scan" loop.
Vector<Macroblock> macroblocks;
TRY(macroblocks.try_resize(context.mblock_meta.padded_total));
Marker marker = TRY(read_marker_at_cursor(*context.stream));
while (true) {
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(*context.stream, context, marker));
} else if (marker == JPEG_SOS) {
TRY(read_start_of_scan(*context.stream, context));
TRY(scan_huffman_stream(*context.stream, context.current_scan.huffman_stream));
TRY(decode_huffman_stream(context, macroblocks));
} else if (marker == JPEG_EOI) {
return macroblocks;
} else {
dbgln_if(JPEG_DEBUG, "{}: Unexpected marker {:x}!", TRY(context.stream->tell()), marker);
return Error::from_string_literal("Unexpected marker");
}
marker = TRY(read_marker_at_cursor(*context.stream));
}
}
static ErrorOr<void> decode_jpeg(JPEGLoadingContext& context)
{
TRY(decode_header(context));
auto macroblocks = TRY(construct_macroblocks(context));
dequantize(context, macroblocks);
inverse_dct(context, macroblocks);
TRY(handle_color_transform(context, macroblocks));
TRY(compose_bitmap(context, macroblocks));
context.stream.clear();
return {};
}
JPEGImageDecoderPlugin::JPEGImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
{
m_context = make<JPEGLoadingContext>();
m_context->stream = move(stream);
}
JPEGImageDecoderPlugin::~JPEGImageDecoderPlugin() = default;
IntSize JPEGImageDecoderPlugin::size()
{
if (m_context->state == JPEGLoadingContext::State::Error)
return {};
if (m_context->state >= JPEGLoadingContext::State::FrameDecoded)
return { m_context->frame.width, m_context->frame.height };
return {};
}
void JPEGImageDecoderPlugin::set_volatile()
{
if (m_context->bitmap)
m_context->bitmap->set_volatile();
}
bool JPEGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
{
if (!m_context->bitmap)
return false;
return m_context->bitmap->set_nonvolatile(was_purged);
}
bool JPEGImageDecoderPlugin::initialize()
{
return true;
}
bool JPEGImageDecoderPlugin::sniff(ReadonlyBytes data)
{
return data.size() > 3
&& data.data()[0] == 0xFF
&& data.data()[1] == 0xD8
&& data.data()[2] == 0xFF;
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGImageDecoderPlugin::create(ReadonlyBytes data)
{
auto stream = TRY(try_make<FixedMemoryStream>(data));
return adopt_nonnull_own_or_enomem(new (nothrow) JPEGImageDecoderPlugin(move(stream)));
}
bool JPEGImageDecoderPlugin::is_animated()
{
return false;
}
size_t JPEGImageDecoderPlugin::loop_count()
{
return 0;
}
size_t JPEGImageDecoderPlugin::frame_count()
{
return 1;
}
ErrorOr<ImageFrameDescriptor> JPEGImageDecoderPlugin::frame(size_t index)
{
if (index > 0)
return Error::from_string_literal("JPEGImageDecoderPlugin: Invalid frame index");
if (m_context->state == JPEGLoadingContext::State::Error)
return Error::from_string_literal("JPEGImageDecoderPlugin: Decoding failed");
if (m_context->state < JPEGLoadingContext::State::BitmapDecoded) {
if (auto result = decode_jpeg(*m_context); result.is_error()) {
m_context->state = JPEGLoadingContext::State::Error;
return result.release_error();
}
m_context->state = JPEGLoadingContext::State::BitmapDecoded;
}
return ImageFrameDescriptor { m_context->bitmap, 0 };
}
ErrorOr<Optional<ReadonlyBytes>> JPEGImageDecoderPlugin::icc_data()
{
TRY(decode_header(*m_context));
if (m_context->icc_data.has_value())
return *m_context->icc_data;
return OptionalNone {};
}
}