ladybird/Userland/Libraries/LibJS/Bytecode/Generator.h
Andreas Kling e46b217e42 LibJS/Bytecode: Move to a new bytecode format
This patch moves us away from the accumulator-based bytecode format to
one with explicit source and destination registers.

The new format has multiple benefits:

- ~25% faster on the Kraken and Octane benchmarks :^)
- Fewer instructions to accomplish the same thing
- Much easier for humans to read(!)

Because this change requires a fundamental shift in how bytecode is
generated, it is quite comprehensive.

Main implementation mechanism: generate_bytecode() virtual function now
takes an optional "preferred dst" operand, which allows callers to
communicate when they have an operand that would be optimal for the
result to go into. It also returns an optional "actual dst" operand,
which is where the completion value (if any) of the AST node is stored
after the node has "executed".

One thing of note that's new: because instructions can now take locals
as operands, this means we got rid of the GetLocal instruction.
A side-effect of that is we have to think about the temporal deadzone
(TDZ) a bit differently for locals (GetLocal would previously check
for empty values and interpret that as a TDZ access and throw).
We now insert special ThrowIfTDZ instructions in places where a local
access may be in the TDZ, to maintain the correct behavior.

There are a number of progressions and regressions from this test:

A number of async generator tests have been accidentally fixed while
converting the implementation to the new bytecode format. It didn't
seem useful to preserve bugs in the original code when converting it.

Some "does eval() return the correct completion value" tests have
regressed, in particular ones related to propagating the appropriate
completion after control flow statements like continue and break.
These are all fairly obscure issues, and I believe we can continue
working on them separately.

The net test262 result is a progression though. :^)
2024-02-19 21:45:27 +01:00

305 lines
11 KiB
C++

/*
* Copyright (c) 2021-2024, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/OwnPtr.h>
#include <AK/SinglyLinkedList.h>
#include <LibJS/AST.h>
#include <LibJS/Bytecode/BasicBlock.h>
#include <LibJS/Bytecode/CodeGenerationError.h>
#include <LibJS/Bytecode/Executable.h>
#include <LibJS/Bytecode/IdentifierTable.h>
#include <LibJS/Bytecode/Label.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Bytecode/Register.h>
#include <LibJS/Bytecode/StringTable.h>
#include <LibJS/Forward.h>
#include <LibJS/Runtime/FunctionKind.h>
#include <LibRegex/Regex.h>
namespace JS::Bytecode {
class Generator {
public:
enum class SurroundingScopeKind {
Global,
Function,
Block,
};
static CodeGenerationErrorOr<NonnullGCPtr<Executable>> generate(VM&, ASTNode const&, ReadonlySpan<FunctionParameter> parameters, FunctionKind = FunctionKind::Normal);
Register allocate_register();
void set_local_initialized(u32 local_index);
[[nodiscard]] bool is_local_initialized(u32 local_index) const;
class SourceLocationScope {
public:
SourceLocationScope(Generator&, ASTNode const& node);
~SourceLocationScope();
private:
Generator& m_generator;
ASTNode const* m_previous_node { nullptr };
};
class UnwindContext {
public:
UnwindContext(Generator&, Optional<Label> finalizer);
UnwindContext const* previous() const { return m_previous_context; }
void set_handler(Label handler) { m_handler = handler; }
Optional<Label> handler() const { return m_handler; }
Optional<Label> finalizer() const { return m_finalizer; }
~UnwindContext();
private:
Generator& m_generator;
Optional<Label> m_finalizer;
Optional<Label> m_handler {};
UnwindContext const* m_previous_context { nullptr };
};
template<typename OpType, typename... Args>
void emit(Args&&... args)
{
VERIFY(!is_current_block_terminated());
size_t slot_offset = m_current_basic_block->size();
grow(sizeof(OpType));
void* slot = m_current_basic_block->data() + slot_offset;
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
auto* op = static_cast<OpType*>(slot);
op->set_source_record({ m_current_ast_node->start_offset(), m_current_ast_node->end_offset() });
}
template<typename OpType, typename... Args>
void emit_with_extra_operand_slots(size_t extra_operand_slots, Args&&... args)
{
VERIFY(!is_current_block_terminated());
size_t size_to_allocate = round_up_to_power_of_two(sizeof(OpType) + extra_operand_slots * sizeof(Operand), alignof(void*));
size_t slot_offset = m_current_basic_block->size();
grow(size_to_allocate);
void* slot = m_current_basic_block->data() + slot_offset;
new (slot) OpType(forward<Args>(args)...);
if constexpr (OpType::IsTerminator)
m_current_basic_block->terminate({});
auto* op = static_cast<OpType*>(slot);
op->set_source_record({ m_current_ast_node->start_offset(), m_current_ast_node->end_offset() });
}
struct ReferenceOperands {
Optional<Operand> base {}; // [[Base]]
Optional<Operand> referenced_name {}; // [[ReferencedName]] as an operand
Optional<IdentifierTableIndex> referenced_identifier {}; // [[ReferencedName]] as an identifier
Optional<IdentifierTableIndex> referenced_private_identifier {}; // [[ReferencedName]] as a private identifier
Optional<Operand> this_value {}; // [[ThisValue]]
Optional<Operand> loaded_value {}; // Loaded value, if we've performed a load.
};
CodeGenerationErrorOr<ReferenceOperands> emit_load_from_reference(JS::ASTNode const&, Optional<Operand> preferred_dst = {});
CodeGenerationErrorOr<void> emit_store_to_reference(JS::ASTNode const&, Operand value);
CodeGenerationErrorOr<void> emit_store_to_reference(ReferenceOperands const&, Operand value);
CodeGenerationErrorOr<Optional<Operand>> emit_delete_reference(JS::ASTNode const&);
CodeGenerationErrorOr<ReferenceOperands> emit_super_reference(MemberExpression const&);
void emit_set_variable(JS::Identifier const& identifier, Operand value, Bytecode::Op::SetVariable::InitializationMode initialization_mode = Bytecode::Op::SetVariable::InitializationMode::Set, Bytecode::Op::EnvironmentMode mode = Bytecode::Op::EnvironmentMode::Lexical);
void push_home_object(Operand);
void pop_home_object();
void emit_new_function(Operand dst, JS::FunctionExpression const&, Optional<IdentifierTableIndex> lhs_name);
CodeGenerationErrorOr<Optional<Operand>> emit_named_evaluation_if_anonymous_function(Expression const&, Optional<IdentifierTableIndex> lhs_name, Optional<Operand> preferred_dst = {});
void begin_continuable_scope(Label continue_target, Vector<DeprecatedFlyString> const& language_label_set);
void end_continuable_scope();
void begin_breakable_scope(Label breakable_target, Vector<DeprecatedFlyString> const& language_label_set);
void end_breakable_scope();
[[nodiscard]] Label nearest_continuable_scope() const;
[[nodiscard]] Label nearest_breakable_scope() const;
void switch_to_basic_block(BasicBlock& block)
{
m_current_basic_block = &block;
}
[[nodiscard]] BasicBlock& current_block() { return *m_current_basic_block; }
BasicBlock& make_block(String name = {})
{
if (name.is_empty())
name = MUST(String::number(m_next_block++));
auto block = BasicBlock::create(name);
if (auto const* context = m_current_unwind_context) {
if (context->handler().has_value())
block->set_handler(context->handler().value().block());
if (m_current_unwind_context->finalizer().has_value())
block->set_finalizer(context->finalizer().value().block());
}
m_root_basic_blocks.append(move(block));
return *m_root_basic_blocks.last();
}
bool is_current_block_terminated() const
{
return m_current_basic_block->is_terminated();
}
StringTableIndex intern_string(ByteString string)
{
return m_string_table->insert(move(string));
}
RegexTableIndex intern_regex(ParsedRegex regex)
{
return m_regex_table->insert(move(regex));
}
IdentifierTableIndex intern_identifier(DeprecatedFlyString string)
{
return m_identifier_table->insert(move(string));
}
bool is_in_generator_or_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::Generator || m_enclosing_function_kind == FunctionKind::AsyncGenerator; }
bool is_in_generator_function() const { return m_enclosing_function_kind == FunctionKind::Generator || m_enclosing_function_kind == FunctionKind::AsyncGenerator; }
bool is_in_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::AsyncGenerator; }
bool is_in_async_generator_function() const { return m_enclosing_function_kind == FunctionKind::AsyncGenerator; }
enum class BindingMode {
Lexical,
Var,
Global,
};
struct LexicalScope {
SurroundingScopeKind kind;
};
void block_declaration_instantiation(ScopeNode const&);
void begin_variable_scope();
void end_variable_scope();
enum class BlockBoundaryType {
Break,
Continue,
Unwind,
ReturnToFinally,
LeaveLexicalEnvironment,
};
template<typename OpType>
void perform_needed_unwinds()
requires(OpType::IsTerminator && !IsSame<OpType, Op::Jump>)
{
for (size_t i = m_boundaries.size(); i > 0; --i) {
auto boundary = m_boundaries[i - 1];
using enum BlockBoundaryType;
switch (boundary) {
case Unwind:
if constexpr (IsSame<OpType, Bytecode::Op::Throw>)
return;
emit<Bytecode::Op::LeaveUnwindContext>();
break;
case LeaveLexicalEnvironment:
emit<Bytecode::Op::LeaveLexicalEnvironment>();
break;
case Break:
case Continue:
break;
case ReturnToFinally:
return;
};
}
}
void generate_break();
void generate_break(DeprecatedFlyString const& break_label);
void generate_continue();
void generate_continue(DeprecatedFlyString const& continue_label);
void start_boundary(BlockBoundaryType type) { m_boundaries.append(type); }
void end_boundary(BlockBoundaryType type)
{
VERIFY(m_boundaries.last() == type);
m_boundaries.take_last();
}
void emit_get_by_id(Operand dst, Operand base, IdentifierTableIndex);
void emit_get_by_id_with_this(Operand dst, Operand base, IdentifierTableIndex, Operand this_value);
void emit_iterator_value(Operand dst, Operand result);
void emit_iterator_complete(Operand dst, Operand result);
[[nodiscard]] size_t next_global_variable_cache() { return m_next_global_variable_cache++; }
[[nodiscard]] size_t next_environment_variable_cache() { return m_next_environment_variable_cache++; }
[[nodiscard]] size_t next_property_lookup_cache() { return m_next_property_lookup_cache++; }
enum class DeduplicateConstant {
Yes,
No,
};
[[nodiscard]] Operand add_constant(Value value, DeduplicateConstant deduplicate_constant = DeduplicateConstant::Yes)
{
if (deduplicate_constant == DeduplicateConstant::Yes) {
for (size_t i = 0; i < m_constants.size(); ++i) {
if (m_constants[i] == value)
return Operand(Operand::Type::Constant, i);
}
}
m_constants.append(value);
return Operand(Operand::Type::Constant, m_constants.size() - 1);
}
private:
enum class JumpType {
Continue,
Break,
};
void generate_scoped_jump(JumpType);
void generate_labelled_jump(JumpType, DeprecatedFlyString const& label);
Generator();
~Generator() = default;
void grow(size_t);
struct LabelableScope {
Label bytecode_target;
Vector<DeprecatedFlyString> language_label_set;
};
BasicBlock* m_current_basic_block { nullptr };
ASTNode const* m_current_ast_node { nullptr };
UnwindContext const* m_current_unwind_context { nullptr };
Vector<NonnullOwnPtr<BasicBlock>> m_root_basic_blocks;
NonnullOwnPtr<StringTable> m_string_table;
NonnullOwnPtr<IdentifierTable> m_identifier_table;
NonnullOwnPtr<RegexTable> m_regex_table;
Vector<Value> m_constants;
u32 m_next_register { Register::reserved_register_count };
u32 m_next_block { 1 };
u32 m_next_property_lookup_cache { 0 };
u32 m_next_global_variable_cache { 0 };
u32 m_next_environment_variable_cache { 0 };
FunctionKind m_enclosing_function_kind { FunctionKind::Normal };
Vector<LabelableScope> m_continuable_scopes;
Vector<LabelableScope> m_breakable_scopes;
Vector<BlockBoundaryType> m_boundaries;
Vector<Operand> m_home_objects;
HashTable<u32> m_initialized_locals;
};
}