ladybird/Userland/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
Idan Horowitz 005d75656e LibCrypto: Replace from_base{2,8,10,16}() & to_base10 with from_base(N)
This allows us to support parsing and serializing BigIntegers to and
from any base N (such that 2 <= N <= 36).
2021-06-29 16:55:54 +01:00

235 lines
8 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
namespace Crypto {
namespace NumberTheory {
UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
{
if (b == 1)
return { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_minus;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_d;
UnsignedBigInteger temp_u;
UnsignedBigInteger temp_v;
UnsignedBigInteger temp_x;
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_2, temp_3, temp_4, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
return result;
}
UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
{
if (m == 1)
return 0;
if (m.is_odd()) {
UnsignedBigInteger temp_z0 { 0 };
UnsignedBigInteger temp_rr { 0 };
UnsignedBigInteger temp_one { 0 };
UnsignedBigInteger temp_z { 0 };
UnsignedBigInteger temp_zz { 0 };
UnsignedBigInteger temp_x { 0 };
UnsignedBigInteger temp_extra { 0 };
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
return result;
}
UnsignedBigInteger ep { e };
UnsignedBigInteger base { b };
UnsignedBigInteger result;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_multiply;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_4, temp_multiply, temp_quotient, temp_remainder, result);
return result;
}
UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger output;
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
return output;
}
UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger gcd_output;
UnsignedBigInteger output { 0 };
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
if (gcd_output == 0) {
dbgln_if(NT_DEBUG, "GCD is zero");
return output;
}
// output = (a / gcd_output) * b
UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
return output;
}
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
{
// Written using Wikipedia:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
VERIFY(!(n < 4));
auto predecessor = n.minus({ 1 });
auto d = predecessor;
size_t r = 0;
{
auto div_result = d.divided_by(2);
while (div_result.remainder == 0) {
d = div_result.quotient;
div_result = d.divided_by(2);
++r;
}
}
if (r == 0) {
// n - 1 is odd, so n was even. But there is only one even prime:
return n == 2;
}
for (auto& a : tests) {
// Technically: VERIFY(2 <= a && a <= n - 2)
VERIFY(a < n);
auto x = ModularPower(a, d, n);
if (x == 1 || x == predecessor)
continue;
bool skip_this_witness = false;
// r 1 iterations.
for (size_t i = 0; i < r - 1; ++i) {
x = ModularPower(x, 2, n);
if (x == predecessor) {
skip_this_witness = true;
break;
}
}
if (skip_this_witness)
continue;
return false; // "composite"
}
return true; // "probably prime"
}
UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
{
VERIFY(min < max_excluded);
auto range = max_excluded.minus(min);
UnsignedBigInteger base;
auto size = range.trimmed_length() * sizeof(u32) + 2;
// "+2" is intentional (see below).
auto buffer = ByteBuffer::create_uninitialized(size);
auto* buf = buffer.data();
fill_with_random(buf, size);
UnsignedBigInteger random { buf, size };
// At this point, `random` is a large number, in the range [0, 256^size).
// To get down to the actual range, we could just compute random % range.
// This introduces "modulo bias". However, since we added 2 to `size`,
// we know that the generated range is at least 65536 times as large as the
// required range! This means that the modulo bias is only 0.0015%, if all
// inputs are chosen adversarially. Let's hope this is good enough.
auto divmod = random.divided_by(range);
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
return divmod.remainder.plus(min);
}
bool is_probably_prime(const UnsignedBigInteger& p)
{
// Is it a small number?
if (p < 49) {
u32 p_value = p.words()[0];
// Is it a very small prime?
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
return true;
// Is it the multiple of a very small prime?
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
return false;
// Then it must be a prime, but not a very small prime, like 37.
return true;
}
Vector<UnsignedBigInteger, 256> tests;
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
tests.append(UnsignedBigInteger(2));
tests.append(UnsignedBigInteger(3));
tests.append(UnsignedBigInteger(5));
tests.append(UnsignedBigInteger(7));
tests.append(UnsignedBigInteger(11));
tests.append(UnsignedBigInteger(13));
UnsignedBigInteger seventeen { 17 };
for (size_t i = tests.size(); i < 256; ++i) {
tests.append(random_number(seventeen, p.minus(2)));
}
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
// With 200 random numbers, this would mean an error of about 2^-400.
// So we don't need to worry too much about the quality of the random numbers.
return MR_primality_test(p, tests);
}
UnsignedBigInteger random_big_prime(size_t bits)
{
VERIFY(bits >= 33);
UnsignedBigInteger min = UnsignedBigInteger::from_base(10, "6074001000").shift_left(bits - 33);
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
for (;;) {
auto p = random_number(min, max);
if ((p.words()[0] & 1) == 0) {
// An even number is definitely not a large prime.
continue;
}
if (is_probably_prime(p))
return p;
}
}
}
}