ladybird/Userland/Libraries/LibJS/Runtime/Intl/MathematicalValue.cpp
Timothy Flynn 0026e9a4c8 LibJS: Implement a basic Intl mathematical value
The Intl mathematical value is much like ECMA-262's mathematical value
in that it is meant to represent an arbitrarily precise number. The Intl
MV further allows positive/negative infinity, negative zero, and NaN.

This implementation is *not* arbitrarily precise. Rather, it is a
replacement for the use of Value within Intl.NumberFormat. The exact
syntax of the Intl MV is still being worked on, but abstracting this
away into its own class will allow hooking in the finalized Intl MV
more easily, and makes implementing Intl.NumberFormat.formatRange
easier.

Note the methods added here are essentially the same as the static
helpers in Intl/NumberFormat.cpp.
2022-07-20 18:21:24 +01:00

346 lines
11 KiB
C++

/*
* Copyright (c) 2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/MathematicalValue.h>
#include <math.h>
namespace JS::Intl {
bool MathematicalValue::is_number() const
{
return m_value.has<double>();
}
double MathematicalValue::as_number() const
{
VERIFY(is_number());
return m_value.get<double>();
}
bool MathematicalValue::is_bigint() const
{
return m_value.has<Crypto::SignedBigInteger>();
}
Crypto::SignedBigInteger const& MathematicalValue::as_bigint() const
{
VERIFY(is_bigint());
return m_value.get<Crypto::SignedBigInteger>();
}
bool MathematicalValue::is_mathematical_value() const
{
return is_number() || is_bigint();
}
bool MathematicalValue::is_positive_infinity() const
{
if (is_mathematical_value())
return false;
return m_value.get<Symbol>() == Symbol::PositiveInfinity;
}
bool MathematicalValue::is_negative_infinity() const
{
if (is_mathematical_value())
return false;
return m_value.get<Symbol>() == Symbol::NegativeInfinity;
}
bool MathematicalValue::is_negative_zero() const
{
if (is_mathematical_value())
return false;
return m_value.get<Symbol>() == Symbol::NegativeZero;
}
bool MathematicalValue::is_nan() const
{
if (is_mathematical_value())
return false;
return m_value.get<Symbol>() == Symbol::NotANumber;
}
void MathematicalValue::negate()
{
m_value.visit(
[](double& value) {
VERIFY(value != 0.0);
value *= -1.0;
},
[](Crypto::SignedBigInteger& value) { value.negate(); },
[](auto) { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::plus(Checked<i32> addition) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value + addition.value() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.plus(Crypto::SignedBigInteger::create_from(addition.value())) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::plus(MathematicalValue const& addition) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value + addition.as_number() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.plus(addition.as_bigint()) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::minus(Checked<i32> subtraction) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value - subtraction.value() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.minus(Crypto::SignedBigInteger::create_from(subtraction.value())) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::minus(MathematicalValue const& subtraction) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value - subtraction.as_number() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.minus(subtraction.as_bigint()) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::multiplied_by(Checked<i32> multiplier) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value * multiplier.value() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.multiplied_by(Crypto::SignedBigInteger::create_from(multiplier.value())) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::multiplied_by(MathematicalValue const& multiplier) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value * multiplier.as_number() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.multiplied_by(multiplier.as_bigint()) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::divided_by(Checked<i32> divisor) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value / divisor.value() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.divided_by(Crypto::SignedBigInteger::create_from(divisor.value())).quotient };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::divided_by(MathematicalValue const& divisor) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value / divisor.as_number() };
},
[&](Crypto::SignedBigInteger const& value) {
return MathematicalValue { value.divided_by(divisor.as_bigint()).quotient };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
static Crypto::SignedBigInteger bigint_power(Checked<i32> exponent)
{
VERIFY(exponent >= 0);
static auto base = Crypto::SignedBigInteger::create_from(10);
auto result = Crypto::SignedBigInteger::create_from(1);
for (i32 i = 0; i < exponent; ++i)
result = result.multiplied_by(base);
return result;
}
MathematicalValue MathematicalValue::multiplied_by_power(Checked<i32> exponent) const
{
return m_value.visit(
[&](double value) {
return MathematicalValue { value * pow(10, exponent.value()) };
},
[&](Crypto::SignedBigInteger const& value) {
if (exponent < 0)
return MathematicalValue { value.divided_by(bigint_power(-exponent.value())).quotient };
return MathematicalValue { value.multiplied_by(bigint_power(exponent)) };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
MathematicalValue MathematicalValue::divided_by_power(Checked<i32> exponent) const
{
return m_value.visit(
[&](double value) {
if (exponent < 0)
return MathematicalValue { value * pow(10, -exponent.value()) };
return MathematicalValue { value / pow(10, exponent.value()) };
},
[&](Crypto::SignedBigInteger const& value) {
if (exponent < 0)
return MathematicalValue { value.multiplied_by(bigint_power(-exponent.value())) };
return MathematicalValue { value.divided_by(bigint_power(exponent)).quotient };
},
[](auto) -> MathematicalValue { VERIFY_NOT_REACHED(); });
}
bool MathematicalValue::modulo_is_zero(Checked<i32> mod) const
{
return m_value.visit(
[&](double value) {
auto result = MathematicalValue { modulo(value, mod.value()) };
return result.is_equal_to(MathematicalValue { 0.0 });
},
[&](Crypto::SignedBigInteger const& value) {
return modulo(value, Crypto::SignedBigInteger::create_from(mod.value())).is_zero();
},
[](auto) -> bool { VERIFY_NOT_REACHED(); });
}
int MathematicalValue::logarithmic_floor() const
{
return m_value.visit(
[](double value) {
return static_cast<int>(floor(log10(value)));
},
[](Crypto::SignedBigInteger const& value) {
// FIXME: Can we do this without string conversion?
return static_cast<int>(value.to_base(10).length() - 1);
},
[](auto) -> int { VERIFY_NOT_REACHED(); });
}
bool MathematicalValue::is_equal_to(MathematicalValue const& other) const
{
return m_value.visit(
[&](double value) {
static constexpr double epsilon = 5e-14;
return fabs(value - other.as_number()) < epsilon;
},
[&](Crypto::SignedBigInteger const& value) {
return value == other.as_bigint();
},
[](auto) -> bool { VERIFY_NOT_REACHED(); });
}
bool MathematicalValue::is_less_than(MathematicalValue const& other) const
{
return m_value.visit(
[&](double value) {
if (is_equal_to(other))
return false;
return value < other.as_number();
},
[&](Crypto::SignedBigInteger const& value) {
return value < other.as_bigint();
},
[](auto) -> bool { VERIFY_NOT_REACHED(); });
}
bool MathematicalValue::is_negative() const
{
return m_value.visit(
[](double value) { return value < 0.0; },
[](Crypto::SignedBigInteger const& value) { return value.is_negative(); },
[](Symbol symbol) { return symbol == Symbol::NegativeInfinity; });
}
bool MathematicalValue::is_positive() const
{
return m_value.visit(
[](double value) { return value > 0.0; },
[](Crypto::SignedBigInteger const& value) { return !value.is_zero() && !value.is_negative(); },
[](Symbol symbol) { return symbol == Symbol::PositiveInfinity; });
}
bool MathematicalValue::is_zero() const
{
return m_value.visit(
[&](double value) { return value == 0.0; },
[](Crypto::SignedBigInteger const& value) { return value.is_zero(); },
[](auto) { return false; });
}
String MathematicalValue::to_string() const
{
return m_value.visit(
[](double value) { return Value(value).to_string_without_side_effects(); },
[](Crypto::SignedBigInteger const& value) { return value.to_base(10); },
[](auto) -> String { VERIFY_NOT_REACHED(); });
}
Value MathematicalValue::to_value(GlobalObject& global_object) const
{
auto& vm = global_object.vm();
return m_value.visit(
[](double value) {
return Value(value);
},
[&](Crypto::SignedBigInteger const& value) {
return Value(js_bigint(vm, value));
},
[](auto symbol) {
switch (symbol) {
case Symbol::PositiveInfinity:
return js_infinity();
case Symbol::NegativeInfinity:
return js_negative_infinity();
case Symbol::NegativeZero:
return Value(-0.0);
case Symbol::NotANumber:
return js_nan();
}
VERIFY_NOT_REACHED();
});
}
MathematicalValue::ValueType MathematicalValue::value_from_number(double number)
{
Value value(number);
if (value.is_positive_infinity())
return Symbol::PositiveInfinity;
if (value.is_negative_infinity())
return Symbol::NegativeInfinity;
if (value.is_negative_zero())
return Symbol::NegativeZero;
if (value.is_nan())
return Symbol::NotANumber;
return number;
}
}